Impact of Ultrafiltration on Serum Sodium Homeostasis and its Clinical Implication in Patients With Acute Heart Failure, Congestion, and Worsening Renal Function

Takeshi Kitai, MD, PhD; Justin L. Grodin, MD, MPH; Yong-Hyun Kim, MD, PhD; W.H. Wilson Tang, MD

Background—The relationship between changes in serum sodium with clinical events in acute heart failure patients using different decongestive events has not been investigated. This study aimed to describe changes in serum sodium levels during decongestion therapy in patients receiving stepped pharmacological therapy versus ultrafiltration.

Methods and Results—We studied 188 patients who were enrolled in the CARRESS-HF trial (Cardiorenal Rescue Study in Acute Decompensated Heart Failure). Treatment-induced hyponatremia was defined as admission normonatremia (≥135 mEq/L) with a subsequent decrease (<135 mEq/L) during hospitalization. Patients treated with ultrafiltration had significantly lower sodium levels than those with conventional treatment at days 1, 4, and 7 (all P<0.01), whereas those at day 30 were similar between the groups. Changes in sodium levels in patients with ultrafiltration were negatively correlated to those in serum creatinine and plasma renin activity. The incidence of treatment-induced hyponatremia was significantly higher in the ultrafiltration group than those receiving conventional treatment (P=0.002). Although patients with discharge hyponatremia had a higher risk for composite end point of all-cause death, rehospitalization, or unscheduled hospital visit in comparison to those without (adjusted hazard ratio, 2.01; 95% confidence interval, 1.09–3.70; P=0.025), the risk was comparable between patients with treatment-induced hyponatremia and those who did not experience any hyponatremia (adjusted hazard ratio, 0.99; 95% confidence interval, 0.50–1.96; P=0.99).

Conclusions—Fluid removal by ultrafiltration was associated with a decrease in serum sodium levels compared with diuretic treatment but returned to baseline levels at day 30. Discharge hyponatremia but not treatment-induced hyponatremia was associated with worse clinical outcomes.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00608491. (Circ Heart Fail. 2017;10:e003603. DOI: 10.1161/CIRCHEARTFAILURE.116.003603.)

Key Words: creatinine ■ diuretics ■ heart failure ■ hyponatremia ■ ultrafiltration
have been reported in detail. Briefly, the CARRESS-HF trial was a prospective, randomized, controlled trial that assessed the effects of ultrafiltration compared with a stepped pharmacological therapy strategy in patients hospitalized with ADHF and evidence of cardiac renal syndrome with persistent congestion. The trial was conducted from June 2008 to January 2012 at 22 sites and included 188 patients. Patients were eligible if they were admitted with a primary diagnosis of ADHF regardless of left ventricular ejection fraction. Patients also were required to have had worsening renal function (defined as an increase in serum creatinine concentration of at least 0.3 mg/dL within 12 weeks before or 10 days after ADHF admission) and persistent congestion. Patients were excluded who had a serum creatinine concentration >3.5 mg/dL at admission or who required vasoactive medications. Ultrafiltration was performed at a fluid removal rate of 200 mL per hour, and intravenous diuretic therapy was placed on a urine output-guided stepped pharmacological approach to provide a comparable measure of fluid removal to ultrafiltration, 3 to 5 L per day.

This study was approved by the Heart Failure Network Steering, Protocol Review, and Data Safety Monitoring Committees and was approved by each participating site’s institutional review board. All patients provided written informed consent.

Sodium Measurements and Study End Points

Patients in the trial had serial laboratory measurements measured at the study sites. The serum sodium concentrations and serum creatinine were measured at baseline, at days 1, 2, 3, 4, and 7 during hospitalization, and at days 30 and 60 after discharge. Plasma renin activity (PRA) was measured at baseline and 4, 7, and 60 days after randomization. Treatment-induced hyponatremia (TIH) was defined as admission normonatremia (≥135 mEq/L) with a subsequent decrease (<135 mEq/L) during hospitalization. Decompensation hyponatremia was defined as admission hyponatremia (<135 mEq/L) that disappeared with decongestive treatment at discharge. Discharge hyponatremia was defined as hyponatremia (<135 mEq/L) at discharge or day 7. The postdischarge composite end point included all-cause mortality, rehospitalization, and unscheduled clinic and emergency department visits.

Statistical Analysis

Categorical variables are shown as numbers and percentages and were compared using the χ2 test or the Fisher exact test, as appropriate. Continuous variables are expressed as mean and SD or median and interquartile range where appropriate. On the basis of their distribution, continuous variables were compared using the Student t test or Wilcoxon rank-sum test. Two-sided P values <0.05 were considered statistically significant. Mixed effects modeling with unstructured covariance was used to compare the association of pharmacological therapy or ultrafiltration with serum sodium levels over time. The Kaplan–Meier method was used to estimate cumulative event-free survival, and differences in the survival curves were compared via the log-rank test. A multivariable Cox proportional hazards model was constructed to estimate the adjusted hazard ratio (HR) and 95% confidence interval (CI). Candidate variables for the multivariable model were selected when their P values in univariable analysis were <0.10 or based on their clinical relevance. These included age, sex, ischemic cause, left ventricular ejection fraction, hypertension, diabetes mellitus, hyperlipidemia, creatinine, hemoglobin, albumin, and PRA. All statistical analyses were performed with the statistical software program JMP Pro 10.0.0 (SAS Institute Inc, Cary, NC) and Stata 13.1 (StataCorp, College Station, TX).

Results

Patient Characteristics

The mean patient age was 68±13 years, 75% were male, and the mean left ventricular ejection fraction was 37±18%. A total of 47 (25%) patients had hyponatremia at admission, whereas 141 (75%) patients had normonatremia at admission (Figure 1). Among 141 patients who had normonatremia at admission, 46 (33%) patients had TIH during their hospital stay. Among 47 patients with hyponatremia at admission, 18 patients had normonatremia at discharge, whereas 29 patients had persisting hyponatremia at discharge. Baseline characteristics that were stratified by the admission hyponatremia and the patterns of changes in sodium levels during decongestion therapy are shown in Table 1. The prevalence of TIH was significantly higher in the ultrafiltration group than in those in the pharmacological therapy group (47% versus 22%; P=0.002; Figure 1 in the Data Supplement). Table 2 shows the comparison of baseline characteristics between patients with and without discharge hyponatremia. Patients with discharge hyponatremia had significantly lower plasma osmolality than those without discharge hyponatremia. There were no significant differences in use of thiazide diuretics among the groups.

Changes in Serum Sodium Concentration: Pharmacological Therapy Versus Ultrafiltration

The mean serum sodium concentration at baseline, days 1, 2, 3, 4, 7, 30, and 60 were 137.2±4.1, 137.3±4.1, 136.9±4.4, 136.4±4.4, 135.9±4.7, 135.6±4.4, 137.1±4.5, and 137.8±3.4 mEq/L, respectively. Figure 2 compares the changes in serum sodium concentrations between patients in the pharmacological therapy and those with ultrafiltration. The mean serum sodium levels were significantly lower in the ultrafiltration group than those in the pharmacological therapy group at baseline (137.8±4.2 versus 136.6±4.0 mEq/L; P=0.03), day 1 (138.1±3.9 versus 136.4±4.1 mEq/L; P=0.004), day 2 (138.3±4.1 versus 135.5±4.3 mEq/L; P=0.001), day 3 (137.8±3.9 versus 135.0±4.4 mEq/L; P=0.001), day 4 (137.7±3.7 versus 134.1±4.8 mEq/L; P=0.001), and day 7 (137.1±3.6 versus 134.2±4.6 mEq/L; P=0.001), respectively. However, there were no significant differences in sodium levels between the groups at day 30 (137.6±4.5 versus 136.6±4.5 mEq/L; P=0.08) and day 60 (138.0±3.4 versus 137.5±3.4 mEq/L; P=0.21). In comparison to pharmacological therapy, ultrafiltration significantly impacted sodium levels over time (P<0.001; Figure 2). There were no significant differences in weight changes from baseline to day 4 between the ultrafiltration and the pharmacological therapy (−12.6±8.6 versus −12.5±11.5 kg; P=0.99), nor among 4 groups stratified by patterns of sodium changes (normonatremia, −12.6±11.1 kg; TIH, −11.5±8.6 kg; decompensation hyponatremia, −15.3±11.4 kg; and persistent hyponatremia, −12.2±8.7 kg; P=0.64).

Correlation of Changes in Serum Sodium Levels With Other Biomarkers

The mean serum creatinine in patients with ultrafiltration at baseline and days 1, 2, 3, 4, 7, 30, and 60 were 2.02±0.64, 2.07±0.70, 2.16±0.81, 2.29±1.00, 2.41±1.14, 2.10±1.21, 1.96±0.80, and 1.91±0.84 mg/dL, respectively. The mean PRA in patients with ultrafiltration at baseline, days 4, 7, and 60 were 11.5±13.0, 23.6±35.2, 20.1±29.7, and 12.5±21.2 ng per mL per hour, respectively. Figure 3 illustrates changes in serum sodium, serum creatinine, and PRA. In patients with ultrafiltration, both serum creatinine levels and PRA were increased along with decongestion therapy and peaked at day 4, then returned to baseline levels at day 30. These changes were negatively correlated.
with those in serum sodium levels (Figure 3A). In contrast, changes in serum sodium, creatinine, and PRA were relatively stable in patients with conventional therapy (Figure 3B).

Sodium Levels and Postdischarge Clinical Events

Overall, there were 29 (15.4%) deaths, 83 (44.1%) rehospitalizations after discharge, and 32 (17.0%) unscheduled hospital visits without admission. The median follow-up was 58 days (interquartile range, 51–63 days). There were 46 patients (24.4%) with hyponatremia at discharge. Patients with discharge hyponatremia had greater event rates than those without discharge hyponatremia (HR, 1.62; 95% CI, 1.02–2.58; \(P=0.042\)). Even after adjusting for confounders, the excess risk of patients with discharge hyponatremia relative to those without for the outcome remained

<table>
<thead>
<tr>
<th>Variable</th>
<th>No Hyponatremia (n=95)</th>
<th>Treatment-Induced Hyponatremia (n=46)</th>
<th>Decompensation Hyponatremia (n=18)</th>
<th>Persistent Hyponatremia (n=29)</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td>68±14</td>
<td>68±13</td>
<td>68±14</td>
<td>67±10</td>
<td>0.96</td>
</tr>
<tr>
<td>Male</td>
<td>68 (72)</td>
<td>36 (78)</td>
<td>15 (83)</td>
<td>22 (76)</td>
<td>0.67</td>
</tr>
<tr>
<td>Body weight, lb</td>
<td>240.7±77.5</td>
<td>232.1±71.0</td>
<td>216.3±50.5</td>
<td>223.6±73.4</td>
<td>0.48</td>
</tr>
<tr>
<td>Ischemic cause</td>
<td>39 (41)</td>
<td>15 (33)</td>
<td>8 (44)</td>
<td>12 (41)</td>
<td>0.74</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>39.5±18.0</td>
<td>37.8±16.9</td>
<td>30.9±13.4</td>
<td>34.2±18.8</td>
<td>0.19</td>
</tr>
<tr>
<td>Hypertension</td>
<td>85 (89)</td>
<td>39 (85)</td>
<td>11 (61)</td>
<td>24 (83)</td>
<td>0.02</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>64 (67)</td>
<td>28 (61)</td>
<td>11 (61)</td>
<td>21 (72)</td>
<td>0.72</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>81 (85)</td>
<td>34 (74)</td>
<td>11 (61)</td>
<td>18 (62)</td>
<td>0.02</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>33 (35)</td>
<td>29 (63)</td>
<td>10 (56)</td>
<td>22 (76)</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline laboratory measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium, mEq/L</td>
<td>139.8±2.7</td>
<td>137.3±1.9</td>
<td>132.5±1.7</td>
<td>131.2±2.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Potassium, mEq/L</td>
<td>4.2±0.6</td>
<td>4.1±0.5</td>
<td>4.1±0.5</td>
<td>4.2±0.6</td>
<td>0.77</td>
</tr>
<tr>
<td>Blood urea nitrogen, mg/dL</td>
<td>51.0±19.8</td>
<td>58.3±26.7</td>
<td>50.6±22.1</td>
<td>62.7±27.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Creatinine, mg/dL</td>
<td>2.24±0.56</td>
<td>2.24±0.58</td>
<td>2.15±0.53</td>
<td>2.10±0.58</td>
<td>0.67</td>
</tr>
<tr>
<td>Hemoglobin, g/dL</td>
<td>10.9±1.7</td>
<td>10.9±1.8</td>
<td>11.1±2.1</td>
<td>11.3±1.9</td>
<td>0.79</td>
</tr>
<tr>
<td>Albumin, g/dL</td>
<td>3.3±0.5</td>
<td>3.6±0.5</td>
<td>3.3±0.7</td>
<td>3.3±0.5</td>
<td>0.06</td>
</tr>
<tr>
<td>Plasma renin activity, ng mL⁻¹ h⁻¹</td>
<td>8.1±11.0</td>
<td>15.0±20.0</td>
<td>25.0±45.7</td>
<td>21.9±30.0</td>
<td>0.003</td>
</tr>
<tr>
<td>Plasma osmolarity, mOsm/L</td>
<td>303.8±7.1</td>
<td>300.2±5.5</td>
<td>289.6±6.9</td>
<td>289.7±6.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE inhibitor or ARB</td>
<td>42 (44)</td>
<td>18 (39)</td>
<td>6 (33)</td>
<td>14 (48)</td>
<td>0.72</td>
</tr>
<tr>
<td>(\beta)-blockers</td>
<td>75 (79)</td>
<td>37 (80)</td>
<td>13 (72)</td>
<td>22 (76)</td>
<td>0.89</td>
</tr>
<tr>
<td>Thiazide</td>
<td>20 (21)</td>
<td>10 (22)</td>
<td>5 (28)</td>
<td>9 (31)</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Values are n (%) or mean±SD. ACE indicates angiotensin-converting enzyme; and ARB, angiotensin receptor antagonist.
significant (adjusted HR, 2.01; 95% CI, 1.09–3.70; \(P = 0.025 \); Figure 4A). The risks for the outcomes were neutral between patients with and without admission hyponatremia (adjusted HR, 1.64; 95% CI, 0.96–2.80; \(P = 0.07 \); Figure 4B). The adverse event rates in patients who developed TIH were comparable to those who did not experience any hyponatremia (adjusted HR, 0.99; 95% CI, 0.50–1.96; \(P = 0.99 \); Figure 4C). Although there were no significant differences in mortality among the 4 groups (\(P = 0.27 \); Figure 4D), patients with TIH had significantly lower mortality than patients with persistent hyponatremia (adjusted HR, 0.43; 95% CI, 0.19–0.97; \(P = 0.041 \); Figure 4E). Although outcomes after discharge were comparable among TIH patients between ultrafiltration versus pharmacological therapy, patients with persistent hyponatremia in the ultrafiltration group had significantly worse outcomes than those in the pharmacological therapy group (\(P = 0.024 \)).

Discussion

The current analysis of the CARRESS-HF trial investigated the changes in serum sodium levels during hospitalization and after discharge and its association with treatment strategies (ultrafiltration versus stepped pharmacological therapy), in 188 patients hospitalized with ADHF, irrespective of left ventricular ejection fraction, who had renal dysfunction and persistent signs of congestion. The major findings of this study were as follows: (1) serum sodium levels in patients with ultrafiltration were decreased during decongestive therapy but returned to baseline levels at 30 days after discharge. In contrast, changes in sodium levels in patients with pharmacological therapy were relatively stable, (2) changes in serum sodium levels during decongestive therapy inversely correlated with changes in serum creatinine and PRA, and (3) TIH was observed in 24.5% of the patients, but TIH was not associated with excessive event rates, although discharge hyponatremia had a significant prognostic value for adverse events.

Hyponatremia in HF is a common electrolyte disorder and is associated with an increased risk for short- and long-term mortality.\(^5\)\(^6\) The pathophysiology of hyponatremia in HF has been thought to be dilutional in most cases, and sodium depletion is relatively rare without loop or thiazide diuretics.\(^15\)\(^–\)\(^17\) However, it is difficult to differentiate these 2 categories, and overlap likely exists. In HF, decreased cardiac output leads to the activation of baroreceptors, which in turn activates the sympathetic nervous system, the renin–angiotensin–aldosterone system, and the release of nonosmotic arginine vasopressin.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Discharge Hyponatremia (+), n=46</th>
<th>Discharge Hyponatremia (−), n=88</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>68±11</td>
<td>66±14</td>
<td>0.30</td>
</tr>
<tr>
<td>Male</td>
<td>36 (78)</td>
<td>64 (73)</td>
<td>0.48</td>
</tr>
<tr>
<td>Ischemic cause</td>
<td>28 (61)</td>
<td>48 (55)</td>
<td>0.48</td>
</tr>
<tr>
<td>Left ventricular ejection fraction, %</td>
<td>39.1±18.5</td>
<td>36.3±16.9</td>
<td>0.37</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>29 (63)</td>
<td>33 (35)</td>
<td>0.002</td>
</tr>
<tr>
<td>Hypertension</td>
<td>39 (85)</td>
<td>76 (86)</td>
<td>0.80</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>33 (71)</td>
<td>58 (66)</td>
<td>0.49</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>31 (67)</td>
<td>68 (77)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Table 2. Patient Characteristics and Clinical Outcomes: Patients With Versus Without Discharge Hyponatremia

Values are n (%) or mean±SD.
These maladaptive responses limit solute and free water delivery to the distal segments of the nephron which ensures maximal free water absorption and leads to hyponatremia.18,19 The natriuretic effect of conventional diuretic therapy also significantly contributes to the development of hyponatremia in HF.1,2 In addition, hyponatremia was found to be more prevalent in ADHF patients with renal dysfunction.20 A decreased glomerular filtration rate results in diminution in the amount of fluid delivered to the distal tubule and limits the rate of renal water excretion.21

Ultrafiltration can remove isotonic fluid without affecting effective circulating volume, leading to decreased neurohumoral activity.7-9 Dilutional hyponatremia is a condition in which intravascular volume is increased and the total amount of sodium is not depleted. Therefore, inappropriate intravascular fluid retention leads to a low serum sodium concentration. If patients had pure dilutional hyponatremia, sodium levels increase along with fluid removal by decongestion therapy. In fact, tolvaptan, a vasopressin type 2 receptor antagonist, shows an increase in serum sodium levels in ADHF with hyponatremia.22 Ultrafiltration can remove a higher amount of sodium in addition to isotonic fluid in contrast to diuretics treatment which only removes hypotonic fluid. Theoretically, if patients had only dilutional hyponatremia, a more favorable water and salt balance can be achieved by ultrafiltration.9 However, we found that patients with ultrafiltration had a significant decrease in sodium levels during decongestion therapy compared with those with diuretic therapy. This unexpected result could be explained by patients having depletional or mixed dilutional and

Figure 3. Comparison of changes in serum sodium, creatinine, and plasma renin activity (PRA) in patients receiving ultrafiltration (A) and those with pharmacological therapy (B).
Figure 4. Comparison of Kaplan–Meier survival curves for freedom from the primary outcome measures between patients with and without discharge hyponatremia (A), those with and without admission hyponatremia (B), those with and without treatment-induced hyponatremia (C), among patients stratified by patterns of sodium levels during decongestion therapy (D), and those with persistent hyponatremia vs treatment-induced hyponatremia (E). CI indicates confidence interval; and HR, hazard ratio.
depletional hyponatremia. Higher amount of sodium removal by ultrafiltration could worsen hyponatremia in those patients. Therefore, decreasing sodium levels during decongestion therapy may suggest coexisting sodium depletion even if patients had signs of residual congestion. It is, however, difficult to predict these sodium changes or diagnose underlying sodium depletion before decongestion therapy. In this study, patients with admission hyponatremia were thought to have dilutional hyponatremia because those patients had signs of residual congestion and lower plasma osmolarity than those without. Another explanation for the decrease in sodium levels by ultrafiltration may be related to the fluid removal rate. If an isotonic fluid removal rate by ultrafiltration is too fast to refill intravascular sodium from extracellular interstitial space, this could lead to reducing circulating volume and sodium depletion. This phenomenon may be seen with other methods of fluid removal. Continuous ambulatory peritoneal dialysis is associated with higher sodium removal than automated peritoneal dialysis thought to be related to longer dwell times despite equal daily fluid removal.23,24 Our finding that serum creatinine levels and PRA were increased in parallel with the decreasing sodium levels supports this hypothesis. Of note, the baseline plasma osmolarity was similar between patients with pharmacological therapy and ultrafiltration. Further studies are needed to diagnose or differentiate these 2 different, but often overlapped, conditions of hyponatremia.

Several clinical studies have shown that hyponatremia is a predictor of rehospitalization and short- and long-term mortality in subjects hospitalized with HF.5,6 Our findings are consistent with previous studies that have demonstrated patients with discharge hyponatremia and were associated with poor outcomes.25 Recently, Verbrugge et al26 investigated the temporal pattern of hyponatremia development during decongestion therapy. The authors reported that TIH was observed in 14.3% of the patients in ADHF. In this study, TIH was observed in 24.5% of patients. Consistent with the previous studies, patients with TIH had similar outcomes compared with those who did not experience any hyponatremia during the treatment.26 More advanced chronic kidney disease patients may explain a higher prevalence of TIH in our study. Development of TIH is not necessarily a bad sign unless hypotension persists after decongestion therapy; however, care is needed for their potential risks to persistent hyponatremia because patients who developed TIH may have coexisting sodium depletion. Further research is unquestionably needed to identify a subphenotype of HF patients with hyponatremia based on the physiological response to decongestion therapy or sodium loading.

This study has several limitations inherent to its design. First, the number of patients studied and the trial duration may be insufficient to assess the relationships between sodium levels and postdischarge outcomes. However, CARRESS-HF trial was a unique study performed by a volume-targeted decongestion strategy which enabled us to investigate the relationships between intravascular volume and serum sodium levels across the decongestion strategies. Second, this was a post hoc analysis from a randomized clinical trial with the inherent associated limitations. Despite covariate adjustment, we cannot exclude the influence of other measured and unmeasured confounders. Third, plasma levels of vasopressin were not available in this study, which could be insightful to assess changes in effective arterial blood volume or volume depletion. Assessment of urine osmolality and sodium were not available in this study either, although these are important to know whether the hyponatremia is because of excess renal excretion of sodium relative to water. Finally, weight gain before hospitalization and blood pressure changes during the decongestion therapy was not available.

Conclusions

Fluid removal by ultrafiltration was associated with significant decrease in serum sodium levels compared with diuretic treatment but return to baseline levels at day 30. Although discharge hyponatremia was associated with worse clinical outcomes, patients with TIH had similar outcomes to those without.

Sources of Funding

Dr Tang has received funding support from the National Institutes of Health (R01HL103931). This article was prepared using public access research materials of CARRESS-HF trial obtained from the National Heart, Lung, and Blood Institute (NHLBI) Biological Specimen and Data Repository Information Coordinating Center (BioLINCC) and does not necessarily reflect the opinions or views of the CARRESS-HF study investigators or the NHLBI.

Disclosures

None.

References

12. Bart BA, Goldsmith SR, Lee KL, Redfield MM, Felker GM, O’Connor CM, Chen HH, Rouleau JL, Givertz MM, Semigran MJ, Mann D, Deswal A, Bull DA, Lewinter MM, Braunwald E. Cardiorenal rescue study in acute decompensated heart failure: rationale and design of the CARRESS-HF trial (Cardiorenal Rescue Study in Acute Decompensated Heart Failure), contrary to expectations, we thought to have less activation of the neurohormonal axis and fewer electrolyte imbalances. However, data are limited.

CLINICAL PERSPECTIVE

Hyponatremia is a common electrolyte disorder and a therapeutic challenge in heart failure and may be a side effect of diuretic therapy. On the other hand, ultrafiltration has been thought of as an effective alternative approach to mechanically reduce congestion which may be resistant to conventional diuretic treatment. In comparison to diuretic use, it has been thought to have less activation of the neurohormonal axis and fewer electrolyte imbalances. However, data are limited on changes in serum sodium levels between ultrafiltration and conventional diuretic therapy. In this post hoc analysis of the CARRRESS-HF trial (Cardiorenal Rescue Study in Acute Decompensated Heart Failure), contrary to expectations, we observed a greater reduction in serum sodium with ultrafiltration versus pharmacological therapy, which was negatively correlated to corresponding serum creatinine and plasma renin activity. The prompt resolution of serum sodium levels after discharge may indicate the electrolyte depletion by ultrafiltration. Furthermore, although patients with discharge hyponatremia had a higher risk for composite end point of all-cause mortality, rehospitalization, or unscheduled hospital visits in comparison to those without, the risk was comparable between patients with treatment-induced hyponatremia and those who did not experience any hyponatremia. These findings highlight the need to differentiate 2 different conditions of hyponatremia, dilutional versus depletional, and to refine a slower ultrafiltration regimen to avoid overaggressive mechanical removal of salt and water.
Impact of Ultrafiltration on Serum Sodium Homeostasis and its Clinical Implication in Patients With Acute Heart Failure, Congestion, and Worsening Renal Function
Takeshi Kitai, Justin L. Grodin, Yong-Hyun Kim and W.H. Wilson Tang

Circ Heart Fail. 2017;10:e003603
doi: 10.1161/CIRCHEARTFAILURE.116.003603
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/10/2/e003603

An erratum has been published regarding this article. Please see the attached page for:
/content/10/3/e000016.full.pdf

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2017/01/27/CIRCHEARTFAILURE.116.003603.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Heart Failure* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Heart Failure* is online at:
http://circheartfailure.ahajournals.org//subscriptions/
Correction

In the article by Kitai et al, “Impact of Ultrafiltration on Serum Sodium Homeostasis and its Clinical Implication in Patients With Acute Heart Failure, Congestion, and Worsening Renal Function,” which appeared in the February 2017 issue of the journal (Circ Heart Fail. 2017;10:e003603. DOI: 10.1161/CIRCHEARTFAILURE.116.003603), several corrections are needed.

In Figure 1, the number of patients with admission hyponatremia should be 47, not 46. In addition, a prior version of Figure 2 was inadvertently published instead of the final version.

In the abstract, “adjusted hazard ratio, 1.66; 95% confidence interval, 1.03–2.65; \(P=0.037 \)” should read “adjusted hazard ratio, 2.01; 95% confidence interval, 1.09–3.70; \(P=0.025 \)” and “adjusted hazard ratio, 0.93; 95% confidence interval, 0.57–1.51; \(P=0.76 \)” should read “adjusted hazard ratio, 0.99; 95% confidence interval, 0.50–1.96; \(P=0.99 \).”

In the text, on page 4, “adjusted HR, 2.01; 95% CI, 1.09–3.70; \(P=0.041 \)” should read “adjusted HR, 2.01; 95% CI, 1.09–3.70; \(P=0.025 \).”

The authors regret these errors.

These corrections have been made to the current online version of the article, which is available at http://circheartfailure.ahajournals.org/content/10/2/e003603.
Supplementary Figure 1.

Comparison of the distribution of patients with no hyponatremia, treatment induced hyponatremia, decompensation hyponatremia and persistent hyponatremia between patients with pharmacological therapy versus ultrafiltration.