Impairment of Diastolic Function by Lack of Frequency-Dependent Myofilament Desensitization in Rabbit Right Ventricular Hypertrophy

Kenneth D. Varian, PhD; Anusak Kijtawornrat, PhD, DVM; Subash C. Gupta, PhD; Carlos A.A. Torres, MD, MPH; Michelle M. Monasky, MS; Nitisha Hirandani, PhD; Dawn A. Delfin, PhD; Jill A. Rafael-Fortney, PhD; Muthu Periasamy, PhD; Robert L. Hamlin, PhD, DVM; Paul M.L. Janssen, PhD, FAHA

Background—Ventricular hypertrophy is a physiological response to pressure overload that, if left untreated, can ultimately result in ventricular dysfunction, including diastolic dysfunction. The aim of this study was to test the hypothesis that frequency-dependent myofilament desensitization, a physiological response of healthy myocardium, is altered in hypertrophied myocardium.

Methods and Results—New Zealand white rabbits underwent a pulmonary artery banding procedure to induce pressure overload. After 10 weeks, the animals were euthanized, hearts removed, and suitable trabeculae harvested from the free wall of the right ventricle. Twitch contractions, calibrated bis-fura-2 calcium transients, and myofilament calcium sensitivity (potassium contractures) were measured at frequencies of 1, 2, 3, and 4 Hz. The force frequency response, relaxation frequency response, and calcium frequency relationships were significantly blunted, and diastolic tension significantly increased with frequency in the pulmonary artery banding rabbits compared with sham-operated animals. Myofilament calcium sensitivity was virtually identical at 1 Hz in the treatment versus sham group (pCa 6.11±0.03 versus 6.11±0.06), but the frequency-dependent desensitization that takes place in the sham group (∆pCa 0.14±0.06, P<0.05) was not observed in the pulmonary artery banding animals (∆pCa 0.02±0.05). Analysis of myofilament protein phosphorylation revealed that the normally observed frequency-dependent phosphorylation of troponin-I is lost in pulmonary artery banding rabbits.

Conclusions—The frequency-dependent myofilament desensitization is significantly impaired in right ventricular hypertrophy and contributes to the frequency-dependent elevation of diastolic tension in hypertrophy. (Circ Heart Fail. 2009;2:472-481.)

Key Words: hypertrophy ■ calcium sensitivity ■ heart rate ■ EC-coupling ■ myofilaments

Ventricular hypertrophy can occur as a result of sustained pressure overload on the ventricles arising from hypertension, valvular stenosis, or ventricular dysfunction. The hypertrophic response is thought to be compensatory at first, but in later stages can result in ventricular dysfunction and eventually pump failure.1 The normal myocardial responses to increases in heart rate can begin to change during the transition from compensatory hypertrophy to decompensation. The force frequency relationship (FFR), normally positive in healthy myocardium, is usually severely blunted or even negative in cases of decompensated hypertrophy and becomes worse as the heart approaches failure.2,3

Clinical Perspective on p 481

Although it is incompletely understood how the FFR changes with disease, it is clear that alterations in calcium handling play a major role.4-5 The role (if any) the myofilaments play in the contractile dysfunction of decompensating ventricular hypertrophy remains unresolved, in particular as it relates to changes in heart rate. Myofilament calcium sensitivity has been reported to be unaltered in LV myocytes from rapid paced dogs6 and in right ventricular (RV) trabeculae of pulmonary artery banded cats.4 Other reports have shown myofilament calcium sensitivity to be decreased in spontaneously hypertensive rats,7 aortic banded rats, and rats with myocardial infarctions.8 In addition, protein kinase C-dependent myofilament phosphorylations have been implicated in heart failure associated decrease in myofilament calcium sensitivity.9 Recently, Lamberts et al10 showed that myofilament calcium sensitivity is elevated in rats with RV hypertrophy at low but not high heart rates. Their study implicated that frequency-dependent desensitization was di-

Received January 22, 2009; accepted June 24, 2009.
From the Department of Physiology and Cell Biology (K.D.V., S.C.G., C.A.T., M.M.M., N.H., M.P., P.M.L.J.), College of Medicine; Department of Veterinary Biosciences (A.K., R.L.H.), Ohio State University; QTest Labs, Inc (A.K., R.L.H.); and Department of Molecular and Cellular Biochemistry (D.A.D., J.A.R.-F.), College of Medicine, Ohio State University, Columbus, Ohio.
The online-only Data Supplement is available at http://circheartfailure.ahajournals.org/cgi/content/full/2/5/472.
Correspondence to Paul M.L. Janssen, PhD, Department of Physiology and Cell Biology, Ohio State University, 304 Hamilton Hall, 1645 Neil Ave, Columbus, OH 43210-1218. E-mail janssen.10@osu.edu
© 2009 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org

DOI: 10.1161/CIRCHEARTFAILURE.109.853200

472
rectly implicated in the blunted FFR. Even now when calcium sensitizing drugs such as levosimendan are being recommended for treatment of cardiac dysfunction,11 the issue of how myofilament calcium sensitivity and its response to frequency change in models of cardiac dysfunction remains unresolved. Understanding how myofilament calcium sensitivity changes with hypertrophy is essential toward understanding cardiac dysfunction and developing better therapies.

In this study, we tested the hypothesis that in hypertrophied myocardium, in which relaxation disorders are known to occur, impaired frequency-dependent myofilament desensitization is a potential contributing factor.

**Methods**

All surgical procedures described throughout this publication were completed in accordance with the Institutional Animal Care and Use Committee and National Institutes of Health guidelines.

**Pulmonary Artery Banding**

Male New Zealand white rabbits (2- to 3-months old, ≈2-kg weight) were premedicated with Acepromazine (1.25 mg/kg) administered subcutaneously ≈30 minutes before anesthetizing with isoflurane (rate of 2.5% to 5.0% as needed). Animals received 100% oxygen (rate of 400 to 600 mL/min) through a loose-fitting mask. Rabbits were then placed in dorsal recumbency and surgical anesthesia was confirmed by the absence of the pedal reflex. Chloramphenicol (30 mg/kg) was administered subcutaneously before surgery. After opening of the thorax, the pulmonary artery was constricted to 3.2 mm (outer diameter) using a sterile tube as a gauge at the origin of the vessel. Ligatures were performed using monofilament polypropylene suture. The muscle layers and the skin were sutured closed, and after recovery, rabbits were given a postoperative dose of buprenorphine (0.01 mg/kg) intramuscularly. Chloramphenicol (30 mg/kg) was given subcutaneously 12 hours from the first preoperative dose and again the following morning. The weights and body temperature of each animal were monitored and recorded 7 days postoperatively. Sham-operated animals were treated and handled identically, with the sole omission of placing the band around the pulmonary artery. Of 32 animals initially included in the study, 16 were banded and 11 were sham operated, whereas 5 died during the procedure. Postoperative death did not occur in any of the banded or sham animals. Because not always a suitable muscle could be obtained from a heart, most experiments were performed with a subset of the total number of animals.

**Measurement of Twitch Contractions, Calcium Transients, and Force-pCa**

At 10 weeks postbanding (and in a subset of animals at 4 weeks), rabbits were anesthetized with 50 mg/kg pentobarbital and injected with 5000 U/kg heparin. After bilateral thoracotomy, hearts were weighed, and samples for protein expression level data were analyzed using paired or unpaired t tests (where applicable) with 2-tailed P value of <0.05 being considered significant. Twitch parameters were analyzed with 1-way and 2-way (repeated measures where applicable) ANOVA with post hoc t test. Interaction terms between variables were tested. Data are depicted as mean±SEM.
Results

First, to characterize the model of PAB, we show in Figure 1A cross-sections of a typical PAB heart and a sham heart. After 10 weeks postbanding, hearts with PAB showed marked RV hypertrophy. The LV appear unaltered from the banding procedure. To quantify the extent of hypertrophy, in a subset of animals, we determined the RV and LV weights of PAB rabbits and compared this with sham-operated rabbits (Table). Both the RV weight and RV to heart weight ratio were significantly increased, whereas the LV weight was unaltered. In a separate study, we recently showed19 that in this model the right atrium also hypertrophies, likely as an indication of increase filling pressure. Histological analysis (not shown) on fixed-frozen sections confirmed an increase in myocyte thickness: 16.00±0.27 μm in PAB RV versus 13.91±0.19 μm in the LV of the same animals (99 cells/group, P<0.0001). Figure 1B and 1C show a Western blot of RV homogenate of 4 PAB rabbits and 4 sham-operated rabbits. The myofilament protein troponin-I (TnI) was used as a marker of hypertrophy. The densitometry analysis of each band showed that the ratio of TnI/glyceraldehyde-3-phosphate dehydrogenase and TnI/calsequestrin was significantly greater for the PAB rabbits compared with the sham-operated rabbits (P<0.01). A further protein analysis was conducted to characterize the expression levels of several key calcium handling proteins and ANP, a reliable marker of hypertrophy. In Figure 2, we show that both in comparison with the LV of the same hearts and compared with the RV of sham rabbits, serca and phospholamban expression levels are lower, whereas NCX and ANP levels are increased in the PAB RV myocardium. Phospholamban phosphorylation levels at Ser16 and Thr17 are not different between the groups.  

Table. Weight Comparison of Hearts From PAB Rabbits and Sham-Operated Rabbits

<table>
<thead>
<tr>
<th>Group Size</th>
<th>Sham (n=6)</th>
<th>PAB (n=9)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW, g</td>
<td>3108±148</td>
<td>3149±113</td>
<td>0.83</td>
</tr>
<tr>
<td>HW, g</td>
<td>8.52±0.53</td>
<td>9.45±0.46</td>
<td>0.22</td>
</tr>
<tr>
<td>HW/BW, g/kg</td>
<td>2.74±0.08</td>
<td>3.00±0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>RV weight, g</td>
<td>1.64±0.09</td>
<td>2.50±0.15</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>LV weight, g</td>
<td>6.16±0.37</td>
<td>6.08±0.28</td>
<td>0.87</td>
</tr>
<tr>
<td>RV/HW, %</td>
<td>19.4±0.7</td>
<td>26.4±0.8</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

Values are mean±SEM. BW indicates body weight; HW, heart weight.
In a pilot study, 4 PAB rabbits were euthanized 4 weeks after surgery to assess RV size and FFR (as a marker of dysfunction). Although marked RV hypertrophy was noted as early as 4 weeks postoperative (increased wall thickness of the RV), the FFR was still positive through 4 Hz (supplemental Figure I). For the remainder of the study, all animals were kept 10 weeks after surgery to ensure further development of hypertrophy and contractile dysfunction phenotype.

Figure 3 shows representative calcium transients, twitch contractions, and phase plane plots from both sham (A, B, and E) and PAB animals (C, D, and F) 10 weeks after operation. Average twitch contraction and calcium transient data from 11 PAB animals and 9 sham animals 10 weeks after surgery are shown in Figure 4. Statistical analysis (2-way repeated-measures ANOVA) revealed a significant interaction between the FFR, and the 2 groups indicating the relationship between force and frequency was different between PAB and sham trabeculae. In addition, the 4-Hz group was found to be significantly different from the 1-Hz group in the sham but not in the PAB trabeculae determined by 1-way ANOVA (Figure 4A). Analysis of relaxation time (measured as RT50 and RT50 to RT90) revealed different results. The first half of the relaxation curve (RT50) showed normal frequency-dependent acceleration of relaxation (FDAR) in both groups with no significant interaction (Figure 4B). However, the second half of the relaxation curve (RT50 to RT90) displayed significant FDAR in the sham but not the PAB (Figure 4C). Figure 4D shows the resulting effect on diastolic tension as a function of frequency. Diastolic tension significantly decreased with frequency in sham trabeculae. In contrast, diastolic tension in the banded rabbit trabeculae tended to increase or remain unchanged, resulting in a lack of difference in the change of diastolic force from 1 to 4 Hz. The drop in diastolic force in the sham animals represented an average 20% decrease (1-way ANOVA significant difference from 1 Hz, \( P < 0.05 \)), whereas PAB animals exhibited a 4% increase in resting force (not significant). Intracellular calcium measurements revealed that systolic and diastolic calcium rose significantly with frequency within each group (Figure 4E). However, the rise in systolic calcium with frequency was
significantly lower in the PAB rabbits compared with sham, whereas the rise in diastolic calcium with frequency was not different between the groups (2-way ANOVA). The time of calcium decline from peak to 50% of peak (RT50) accelerated significantly with frequency similarly in sham and PAB trabeculae (Figure 4F).

To examine the role of myofilament calcium sensitivity modulations on the observed alterations in relaxation, we used potassium-induced contractures on twitching sham and PAB trabeculae to construct myofilament calcium sensitivity curves. Figure 5A shows the chart recording of a potassium contracture where force and intracellular calcium were mea-

Figure 4. Average data at all 4 frequencies of developed force (A), RT50 of force decline (B), RT90 to RT50 of force decline (C), diastolic tension relative to 1 Hz (D), diastolic and systolic calcium (E), and RT50 of intracellular calcium decline (F). Two-way repeated-measures ANOVA revealed a significant interaction (indicated with I) between frequency and the 2 groups (indicating a difference in the relationship) with respect to developed force, RT50 to RT90, diastolic tension relative to 1 Hz, and systolic calcium. No significant interactions were found between frequency and the 2 groups with respect to RT50 of force decline, diastolic calcium, or RT50 of calcium decline. Analysis by each group separately by 1-way ANOVA revealed a significant difference from 1 Hz in all 7 parameters measured (post hoc t test). *Significantly different compared with 1 Hz (PAB, n = 11; sham, n = 9).
sured simultaneously. The gray area on the graph represents the time where the high potassium solution superfused the trabeculae. Figure 5B and 5C show representative force-calcium relationships from potassium contractures in sham and PAB animals at 1 and 4 Hz and average pCa50 (Figure 5D) and maximum developed force (Fmax) values (Figure 5E) for all 11 PAB and 9 sham rabbits. We observed a significant decrease in myofilament calcium sensitivity at 4 Hz compared with 1 Hz in the sham animals. This is consistent with previous findings and the decrease in diastolic force in combination with an increase in diastolic calcium. However, the PAB animals exhibited no shift in myofilament calcium sensitivity from 1 to 4 Hz (P > 0.5). In addition, we found no significant differences in maximum developed force of any group (Figure 5E) or the n_Hill coefficient (data not shown).

To explore a potential correlation between changes in frequency-dependent myofilament desensitization and the changes in mechanical function, we plotted the change in myofilament sensitivity between 1 and 4 Hz versus the change in diastolic function between 1 and 4 Hz in Figure 6. Despite a considerable spread in both groups, a general trend was observed where muscles exhibiting the greatest change in myofilament calcium sensitivity with frequency (mostly in the sham group) also show the best response in diastolic function (i.e., a decrease in diastolic tension), whereas the muscles with no loss or even an increase in sensitivity showed a worsening (i.e., increase) in diastolic tension.

Finally, we examined whether myofilament protein phosphorylation was altered with frequency. Myofilament protein phosphorylation at TnI and MLC-2 has been previously implicated in shifting myofilament calcium sensitivity.13

---

**Figure 5.** A, Representative chart recording during a potassium contracture where force and calcium were measured simultaneously. B and C, Representative force-calcium relationships (displayed pCa and normalized to max) that were derived from the potassium contractures. We observed a shift in myofilament calcium sensitivity from 1 to 4 Hz in the sham trabeculae and observed a blunted or no shift in sensitivity in the PAB trabeculae. D, Average pCa50 for 9 sham and 11 PAB animals. The only significant change in pCa50 between frequencies was between 1 and 4 Hz in the sham trabeculae (P < 0.05, 2-way repeated-measures ANOVA, followed by paired t test). Average max force for all steady-state curves at 1 and 4 Hz in sham and PAB trabeculae is shown (D). No significant difference was found between any of the groups.
The key novel finding in this study is the demonstration of a severely blunted or even absent frequency-dependent myofilament desensitization observed in the RV trabeculae isolated from the PAB rabbits. This finding, in conjunction with the relaxation deficiencies observed at high stimulation rates in the trabeculae isolated from the RV, suggests that frequency-dependent myofilament desensitization may be a mechanism to prevent diastolic dysfunction at higher heart rates, and that this mechanism is impaired in dysfunctional myocardium, contributing to, or even causing diastolic dysfunction.

PAB has been used in adult cats for 11 weeks and for 8 weeks in young lambs to induce RV hypertrophy. Initially, we assessed contractile parameters in rabbits banded after only 4 weeks postsurgery. We observed a marked hypertrophic response to the banding but at this time point did not yet observe a significant deterioration of the FFR. This pilot study indicates that after 4 weeks, the hearts were still in the compensatory hypertrophy stage. We subsequently prolonged the postoperative period to 10 weeks, where we found a significantly blunted FFR and calcium frequency response. These assessments suggest that the myocardium had entered the decompensated hypertrophy stage at this point. At this state, animals did not show any clinical signs of heart failure (peripheral edema, lethargy, etc) and thus are not yet in the failing stage, whereas their RV has increased in weight by 52% on average, with the left ventricular (LV) weight being unaffected.

Key findings in this study include the blunted FDAR in the late stage of the relaxation trajectory, analogous to increased ventricular filling pressure, and a subsequent elevation in diastolic tension with frequency in trabeculae from the PAB group relative to shams. The latter observation is in line with previous findings where PAB in lambs induced diastolic dysfunction measured by an increase in end-diastolic pressure. Ventricular hypertrophy has also been shown to be a direct precursor to diastolic dysfunction in human patients. Possible mechanisms proposed for diastolic dysfunction are increased ventricular fibrosis, alterations in myocyte cytoskeleton, slowed myocyte relaxation, and residual myofilament calcium desensitization.

Accordingly, we examined the phosphorylation status of myofilament proteins TnI, TnT, Tm, MyBP-C, and MLC-2 using the Pro-Q Diamond phosphoprotein stain in trabeculae from sham and PAB hearts twitching at either 1 or 4 Hz. Figure 7A and 7B show a gel image stained with Sypro ruby for total protein (Figure 7A) and later with the Pro-Q Diamond stain (Figure 7B). Each gel had at least 1 of the 1 Hz and 2 of the 2 Hz control (sham) tissues loaded. For each gel, per protein, the weighed average of these 1 and 4 Hz controls was taken as a value of 1, and the other bands on the same gel were normalized to this value. This normalization now allows density ratios (phosphoprotein/total) for each band to be compared between gels and lanes on the same gel. We chose this method, as it further reduced noise compared with when data are only normalized to 1 Hz (less bands used in the correction factor leading to less accurate correction factors). In addition, it allows the scaling of all data, and variability of the 1-Hz sham group is so not lost (values would be 1.0 with no error if all is normalized to 1-Hz sham). Band densitometry revealed that the ratio of phosphoprotein/total protein at the band for TnI was significantly higher at 4 Hz compared with 1 Hz in the sham trabeculae consistent with the frequency dependent myofilament desensitization observed, whereas the change in MyBP-C phosphorylation was borderline significant in the sham trabeculae (P = 0.07). In contrast, the PAB trabeculae displayed no difference in phosphorylation status of TnI between 1 and 4 Hz, but the 4 Hz in the PAB group was significantly lower than that of the sham group. The bands corresponding with phosphorylation of MLC-2, MyBP-C, TnT, and Tm displayed no significant changes between 1 and 4 Hz in PAB trabeculae.

**Discussion**

The key novel finding in this study is the demonstration of a severely blunted or even absent frequency-dependent myofilament calcium sensitivity. We have previously shown that myofilament phosphorylation can elevate diastolic force by leaving insufficient time for crossbridge cycling during rest due to elevated myofilament calcium sensitivity.
ament calcium sensitivity decreases with frequency in the healthy myocardium,\textsuperscript{13} whereas we find here that there is no such change in the trabeculae from PAB rabbits. Frequency-dependent myofilament desensitization seems to be a physiological mechanism to counterbalance sustained elevations in diastolic calcium that occurs in normal myocardium, specifically in larger mammals, when it performs at high pacing rates. The blunting of myofilament desensitization can potentially be seen as a loss of this counterbalance mechanism, allowing for an elevation in diastolic tension with an increase in heart rate. It is also worthy to note that we observed that resting tension decreased with frequency in the sham, whereas there was a slight (but not significant) increase in the PAB. This implies that there may be a small amount of residual cross-bridge binding at the lower frequency in normal myocardium when filling times are sufficient, causing no functional abnormalities. This is consistent with previous findings where LV end-diastolic pressure decreased with an increase in heart rate in humans.\textsuperscript{24} Diastolic calcium rises markedly in rabbits when frequency is increased\textsuperscript{5,13,14} compared with rat where it either does not increase or only increases by very small amounts.\textsuperscript{10} Therefore, the frequency-dependent myofilament desensitization that occurs in rabbits to potentially counterbalance elevated diastolic calcium levels may not be necessary to prevent diastolic dysfunction in the rat or mouse, and thus alterations in the response may be a phenomenon that is typical of larger mammals. In addition, the force-frequency response in large mammals is much more prominent than in rats and mice and may contribute to the frequency-dependent differences between models.\textsuperscript{25} Considering the above differences, we believe that these results in intact rabbit trabeculae at body temperature likely closely reflect the human situation, and thus provide a potential novel angle through which to approach potential future therapies for diastolic dysfunction.

Decreased activity of key kinases in hypertrophied myocardium that are not properly activated may be responsible for this lack of myofilament desensitization in PAB myocardium. This is consistent with previous studies that have shown reduced activity of kinases such as PKA and corresponding increases in myofilament calcium sensitivity in myofilaments from failing hearts.\textsuperscript{26,27} Our data show that at least one of the molecular events underlying frequency-dependent myofilament calcium desensitization is the phos-
phorylation of TnI. Although changes in TnI phosphorylation within a group of animals can explain the lack of frequency-dependent changes in sensitivity, we did observe that the absolute values between groups for myofilament calcium sensitivity do not correspond to the TnI. Thus, it is likely that during the development of hypertrophy, other changes occur that impact on this parameter. In fact, it is still unclear whether in hypertrophied tissue myofilament calcium sensitivity is affected, and if so, in what direction. Previous methods of determining calcium sensitivity often are performed in demembraned, or so-called “skinned” fiber muscles or myocytes, in which the status of the tissue, including frequency of contraction before harvesting of the tissue may play a big role in the outcome of the data.28 For instance, if trabeculeae would be skinned and their phosphorylation status preserved after contracting at 1 Hz, it may be that there is no difference between SHAM and PAB when assessed, whereas if they were harvested right after contracting at 4 Hz, it may be determined that myofilament calcium sensitivity is increased. If the tissue would be quiescent for a long while, which often is the case, one could possibly extrapolate to find a decreased sensitivity. Thus, frequency of stimulation before harvesting muscles or myocytes may play an important role in the variability of the results pertaining to myofilament calcium sensitivity in diseased myocardium.

We used the pulmonary banded rabbit as a model of hypertrophy for a few reasons. The linear trabeculeae needed for the in vitro study are mainly found in the RV. In the LV such preparations also exist, but are much more sparse, and generally not quite as linear. However, the hypertrophic response of the RV includes increase in myocyte and wall thickness, a similar functional loss (flattening or reversing of the normally positive FFR), increase in diastolic tension, and the protein expression pattern is also extremely similar to what is observed in LV hypertrophy/failure, including a downregulation of serca,29 upregulation of NCX,30 and up-regulation of ANP.31 Thus, both anatomic, mechanical, and molecular changes after PAB mimic what is found in LV hypertrophy and failure, and thus the outcome of the results likely reflects similarly the response that would have been observed in LV myocardium.

At this point, we can only speculate on potential therapeutic implications of our findings. Alterations in myofilament calcium sensitivity in hypertrophic ventricular tissue could potentially be an underlying mechanism for the diastolic dysfunction observed in some models of hypertrophy and heart failure. Diastolic dysfunction often follows compensatory hypertrophy as one of the first signs of decompensation1 and increased myofilament calcium sensitivity has been proposed as a possible underlying mechanism. In human heart failure, increased myofilament calcium sensitivity was reported in intact trabeculeae32 and skinned myocytes and was accompanied by elevated diastolic tension.29 Increased myofilament calcium sensitivity could potentially have detrimental effects on diastolic filling pressures, especially at high heart rates when diastolic filling time is reduced. Thus, in light of the loss of frequency-dependent myofilament desensitization observed in this study, heart rate control is likely beneficial to avoid diastolic complications. Once in future work the molecular mechanisms through which frequency-dependent myofilament desensitization is mediated are unraveled, they may provide a pharmacological approach to reestablish this frequency-dependent process, thereby allowing the heart to use higher pacing rates without an immediate compromise of diastolic function.

In vivo, changes in heart rate are often achieved through activation of the β-adrenergic system. Thus, the data observed in vivo is in many cases accompanied by PKA-dependent phosphorylation of proteins including the L-type calcium channel, phospholamban, and troponin-I. Although it may be interesting to observe the frequency-dependent changes in concert with β-adrenergic stimulation, it is well known that the response to β-adrenergic stimulation is altered in cardiac disease, and thus would likely overcomplicate the analysis. In addition, the short experimental span of the preparation in light of assessment of calcium transients at body temperature presented technical limitations to assess both processes in our models at this stage.

In conclusion, we have shown that a myofilament contribution to the force-frequency relationship is altered in dysfunctional hypertrophic myocardium. Blunted frequency-dependent myofilament desensitization may be a prominent, previously unrecognized mechanism that results in diastolic dysfunction especially at higher heart rates, and likely involves an impairment of frequency-dependent phosphorylation of TnI.

Acknowledgments
We thank the surgical staff at the Ohio State University Laboratory Animal Resources, especially Valerie Bergdall, Jeanne Greene, Annemarie Hoffman, Erin Yu, and Daise Da Cunha.

Sources of Funding
This investigation was supported by National Heart, Lung, and Blood Institute grants R01 746387 and KO2 83957 (to P.M.L.J.), Established Investigator Award 0740040 of the American Heart Association (to P.M.L.J.), and American Heart Association Ohio Valley affiliate predoctoral fellowship 0615288B (to K.D.V.).

Disclosures
None.

References
Not only does the heart need to beat forcefully to provide adequate blood supply to the organism, but it is also critically important that the myocardium relaxes sufficiently fast to allow for filling with blood to be ejected the next beat. The relaxation of the myocardium, especially at increased heart rates, is a critical regulator of cardiac function. Myocardial relaxation has become increasingly clinically relevant, and better diagnostic techniques have elucidated that relaxation pathways, once further identified and unraveled, potentially present us with novel therapeutic options for cardiac disorders.

**CLINICAL PERSPECTIVE**

**Diastolic Function and Calcium Sensitivity**


Impairment of Diastolic Function by Lack of Frequency-Dependent Myofilament Desensitization in Rabbit Right Ventricular Hypertrophy

Kenneth D. Varian, Anusak Kijtawornrat, Subash C. Gupta, Carlos A.A. Torres, Michelle M. Monasky, Nitisha Hiranandani, Dawn A. Delfin, Jill A. Rafael-Fortney, Muthu Periasamy, Robert L. Hamlin and Paul M.L. Janssen

*Circ Heart Fail. 2009;2:472-481; originally published online July 21, 2009;
doi: 10.1161/CIRCHEARTFAILURE.109.853200
*Circulation: Heart Failure* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/2/5/472

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2009/08/24/CIRCHEARTFAILURE.109.853200.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Heart Failure* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Heart Failure* is online at:
http://circheartfailure.ahajournals.org//subscriptions/
Supplemental Material

The graph shows the frequency deviation ($F_{dev}$) relative to 1 Hz for different frequencies (1 Hz, 2 Hz, 3 Hz, 4 Hz). The data points indicate that the frequency deviation increases with frequency, marked by an asterisk at 4 Hz.
Figure 1 Supplemental: The average developed force normalized to 1 Hz for each frequency in trabeculae taken from PAB rabbits after 4 weeks of banding. The FFR was found to be positive through 4 Hz. * Significantly different at 4 Hz compared to 1 Hz (p<0.05).
Figure 1 Supplemental: The average developed force normalized to 1 Hz for each frequency in trabeculae taken from PAB rabbits after 4 weeks of banding. The FFR was found to be positive through 4 Hz. * Significantly different at 4 Hz compared to 1 Hz (p<0.05).