A 48-year-old woman without known cardiovascular disease presented with progressive dyspnea. The ECG showed first-degree heart block. Plasma Troponin I and T were persistently elevated. Chest x-ray was normal. Echocardiography demonstrated asymmetrical left ventricular (LV) hypertrophy with septal predominance and moderately impaired LV systolic function. Coronary angiography demonstrated angiographically normal coronary arteries.

Although the echocardiographic features were consistent with a diagnosis of hypertrophic cardiomyopathy, the ECG evidence of conduction abnormality and persistent elevation of cardiac enzymes were more suggestive of a myocarditic process. A cardiac MRI (CMR) was requested. This demonstrated asymmetrical septal hypertrophy with thickening of the basal-mid septum extending to the apex (Figure 1). On delayed-enhancement imaging, multiple discrete areas of hyperenhancement were noted throughout the LV myocardium that deformed the endocardial and epicardial borders (Figure 2). The LV ejection fraction was 31%. The clinical presentation and CMR appearances were suggestive of sarcoidosis; however, high-resolution CT of the thorax to look for confirmatory evidence of pulmonary sarcoidosis showed no evidence of lymphadenopathy or other pulmonary involvement. She therefore proceeded to cardiac biopsy to establish a diagnosis. This showed focal granulomas composed of multinucleated giant cells with central necrosis and associated lymphocytes. Tuberculous and fungal infections were excluded by negative Ziehl-Neelsen and periodic acid-Schiff staining. A diagnosis of isolated primary cardiac sarcoidosis (PCS) was made.

The clinical course was complicated by complete heart block. She received an implantable cardiac defibrillator. Prednisone was commenced at 40 mg per day for treatment of PCS, with a rapid response of dyspnea and normalization of the Troponin I within 1 week, remaining suppressed over 6 months of follow-up. Repeat echocardiography at 1 month showed no change in LV function.

Cardiac involvement has been reported in up to 30% of patients with sarcoidosis, but the prevalence of isolated PCS is not well defined.1,2 Nonspecific CMR features of sarcoidosis may include segmental wall motion abnormalities in nonvascular distributions and focal wall thickening,3,4 changes that may mimic hypertrophic cardiomyopathy. CMR has been shown to be of greater utility than echocardiography and nuclear imaging modalities (other than PET) in the diagnosis of PCS.4 Although not absolutely contraindicated, the utility of CMR may be limited in patients with pacemakers.4 Cardiac enzymes may be helpful in guiding treatment in patients such as this woman in whom serial CMR evaluations are contraindicated by insertion of pacing devices.

Acknowledgments
We thank Darren Brown, Biomedical Imaging, Middlemore Hospital.

Disclosures
None.

References

Key Words: heart failure imaging sarcoidosis troponin
Figure 1. Asymmetrical LV hypertrophy shown in CMR steady-state-free precession images in LV short-axis and 3-chamber views.

Figure 2. Late gadolinium enhancement (arrows) shown in CMR delayed-enhancement images in 2-, 4-, and 3-chamber projections.
Isolated Primary Cardiac Sarcoidosis: MRI Diagnosis and Monitoring of Treatment
Response With Cardiac Enzymes
Jonathon White, Tim Sutton and Andrew Kerr

Circ Heart Fail. 2010;3:e28-e29
doi: 10.1161/CIRCHEARTFAILURE.110.939686
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/3/6/e28

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/