Decompensated Heart Failure Is Associated With Reduced Corin Levels and Decreased Cleavage of Pro–Atrial Natriuretic Peptide

Uzoma N. Ibebuogu, MD*; Inna P. Gladysheva, PhD*; Aiilyan K. Houng, BS; Guy L. Reed, MD

Background—By promoting salt and water excretion, the corin and the atrial natriuretic peptide (ANP) system should help to maintain fluid balance in heart failure. Yet, the development of fluid retention despite high levels of ANP-related peptides suggests that this compensatory system is limited.

Methods and Results—Levels of circulating corin (the pro–ANP-converting enzyme) and pro-ANP were measured in hospitalized patients with heart failure, using novel immunoassays. Patients (n = 14) had severe heart failure (New York Heart Association class III-IV) with a median ejection fraction of 18% and median brain natriuretic peptide levels of 1940 pg/mL. In heart failure, median plasma corin levels were 7.6-fold lower than measured in plasma from 16 normal control subjects (180 versus 1368 pg/mL, P < 0.01). In contrast, in patients with heart failure, levels of plasma N-terminal ANP peptides (N-ANP and pro-ANP) levels were markedly elevated (42.0 versus 7.5 ng/mL, P < 0.01). Levels of uncleaved pro-ANP, measured by novel immunoassays, were significantly higher in patients with heart failure (P < 0.01), suggesting that corin cleavage of pro-ANP was impaired. Median plasma levels of cyclic guanosine monophosphate were elevated in patients with heart failure (150.0 versus 7.6 pmol/mL, P < 0.01), and plasma cyclic guanosine monophosphate levels positively correlated with the fractional amount of cleaved pro-ANP (r = 0.59, P < 0.03) but not with levels of uncleaved pro-ANP, implying that the cellular response to ANP remained intact.

Conclusions—Taken together, these data suggest that there may be patients for whom low corin levels and impaired pro-ANP cleavage contribute to acute decompensation. (Circ Heart Fail. 2011;4:114-120.)

Key Words: atrial natriuretic peptide • biomarker • heart failure

Heart failure is a major public health problem that affects more than 4.5 million Americans; ~550,000 new cases are diagnosed each year.1,2 Despite treatment advances, heart failure is associated with high morbidity, and half of patients with heart failure die within 5 years.3 For unknown reasons, individuals with the same degree of impaired heart function can show marked differences in the development of heart failure symptoms,4,5 suggesting that factors other than cardiac function contribute to this condition.

Editorial see p 107
Clinical Perspective on p 120

Corin is a serine protease in the heart6 that is primarily responsible for cleavage-activation of pro–atrial natriuretic peptide (pro-ANP) to ANP.7 Although corin expression has not been quantified in humans with heart failure, a previous study reported that cardiac tissue levels of corin were not altered in an autopsy specimen from a patient with total anomalous pulmonary venous return.8 Corin transcripts and protein are abundantly expressed in cardiomyocytes of both the atrium and ventricle, often in cells that also contain pro-ANP.6,8,9 Corin gene expression is increased in the hypertrophied regions of the ventricle of the heart after coronary ligation in rats,10 but corin is decreased in the atrium after the development of experimental heart failure in rats.11 This suggests that the activity of corin and the subsequent cleavage of pro-ANP, may be altered in humans who have heart failure and that corin may be involved in the pathogenesis of heart failure.

In individuals with diminished heart function, there is increased production of pro-ANP.12–16 Pro-ANP is a prohormone that is secreted from heart and cleaved to an N-terminal fragment (N-ANP) and a C-terminal, biologically active peptide (ANP) by the heart-specific serine protease corin (Figure 1).7,17 ANP but not pro-ANP binds to the natriuretic peptide-A receptor (NPR-A) to initiate signaling through...
3’-5’-cyclic guanosine monophosphate (cGMP). Through this mechanism, ANP triggers sodium excretion (natriuresis), causes vasodilation, interferes with the renin-angiotensin system, inhibits mitogenesis, and mediates other effects.14 These effects of ANP can be beneficial in patients with impaired heart function and heart failure,22 and there is evidence that infusions of ANP ameliorate heart failure.23,24

It is an apparent paradox that the highest levels of ANP-related peptides (pro-ANP, N-ANP, and ANP) occur in patients with severe heart failure who have the worst prognosis.25–28 Why high levels of ANP-related peptides fail to avert heart failure is poorly understood. We hypothesized that defects in the corin-ANP system may occur in patients with impaired heart function and heart failure, and there is evidence that infusions of ANP ameliorate heart failure.23,24

Blood Sample Collection
Venous blood samples were collected from consenting subjects on admission using standard EDTA-aprotinin tubes and immediately stored on ice. These inhibitors block enzymes in the blood known to affect the degradation of pro-ANP.29 The blood samples were centrifuged at 3000g for 20 minutes at 4°C, aliquoted, and stored at −80°C until analysis.

Heart Failure Biomarkers Measurement
Assays were performed by personnel unaware of the patient’s identity and outcome. brain natriuretic peptide (BNP)-related peptides were measured by the standard clinical laboratory method. Elevated BNP levels were defined as those values above the 95th percentile of normal.30 The cGMP was measured with an enzyme immunoassay (R&D Systems, Inc, Minneapolis, MN).

Plasma N-terminal-related ANP peptides (pro-ANP+N-ANP) were measured using an enzyme immunoassay directed against an N-terminal amino acid sequence (26 to 55 of prepro-ANP, or 1 to 30 of pro-ANP, EK-005-19, Phoenix Pharm, Inc). This ELISA measures pro-ANP and N-ANP but has no reactivity with C-ANP-related peptides such as ANP. To separately measure pro-ANP and N-ANP, we altered the assay process to immunodeplete all C-ANP-related peptides (pro-ANP and C-ANP but not N-ANP) from samples using an antibody directed against C-ANP (G-005–06, ANP-1–28, Phoenix Pharm, Inc). This process then allowed direct measurement of the N-ANP remaining in the plasma. Plasma samples were diluted with 0.05% Tween 20 in PBS and applied into a 96-well, U-bottom, flexible microplate (Becton Dickinson Labware, Franklin Lakes, NJ) precoated with either purified rabbit anti-human C-ANP (1–28) IgG (5 μg/mL PBS, Phoenix Pharm, Inc) or with control rabbit IgG (5 μg/mL PBS) sealed and incubated for 1 hour at room temperature. Subsequently, we measured the N-ANP in the plasma depleted of C-ANP-related peptides or both N-ANP and pro-ANP in control-depleted plasma samples (after pretreatment with control IgG) using the N-terminal enzyme immunoassay (EK-005–19, Phoenix Pharm, Inc). In our assays, N-ANP (26–55) or purified recombinant pro-ANP (see below) was used as a control. Pro-ANP values in the plasma samples were determined by the difference between the measured N-ANP and the total N-ANP-related peptides (pro-ANP and N-ANP). To confirm the complete depletion of C-ANP-related peptides (pro-ANP and C-ANP) in these assays, we used an enzyme immunoassay directed against a C-terminal amino acid sequence (ANP 1–28) contained in C-ANP (EK-005–06, Phoenix Pharm, Inc) and recombinant pro-ANP1 proteins. Under these assay conditions, the specific anti-C-ANP IgG but not the control rabbit IgG successfully depleted recombinant proteins at concentrations that exceeded the highest values measured in all our plasma samples. When the ANP-related peptides were measured using this immunodepletion method, the sensitivity of these assays increased.32

Immunoblots were performed to identify pro-ANP in plasma. Plasma (1 mL) was incubated with immobilized antibody directed against full-length pro-ANP antibody (FL-153, Santa Cruz Biotech-
ology) for 2 to 4 hours at 4°C. After washing, bound proteins were eluted with sample buffer (100°C) and subjected to SDS-PAGE under reducing conditions. After electrophoretic transfer, blots were probed with antibodies directed to sequences in the N-terminus (pro-ANP [26–55], Bachem Americas) and the C-terminus of pro-ANP (ANP-α [1–28], Phoenix Pharm). Blots were probed with IRDye-680 goat-anti-rabbit secondary antibodies and exposed on Li-Cor Odyssey Infrared Imaging System (Li-Cor Biosciences).

**Enzyme Immunoassay for Human Corin in Plasma**

A sandwich ELISA assay was developed to measure human corin in plasma samples using DuoSet ELISA Development kit (R&D Systems). Plasma samples were diluted 2- to 3-fold with ELISA assay buffer, 0.05% Tween 20 in PBS, pH 7.2 to 7.4. To precipitate ballast proteins and amplify corin binding to the capture antibody,32 diluted plasma samples were applied for 40 minutes to a 96-well, U-bottom, flexible microplate (Becton Dickinson Labware) pre-coated with nonspecific rabbit IgG (5 μg/mL PBS) purified by protein A-Sepharose (Pierce, Rockford, IL). For the ELISA assay, wells of a flat-bottom microplate (R&D Systems) were precoated with the capture antihuman corin rat monoclonal antibody (4 μg/mL PBS) produced against the recombinant extracellular domain of corin 67 to 1042 amino acids (R&D Systems). The plate was sealed and incubated over night. Nonspecific binding sites were block with 1% BSA in PBS for 1 hour. Recombinant human corin protein was used as a standard for this assay. All assay steps were performed at room temperature and with orbital shaking. Plasma samples after pretreatment with control rabbit IgG or standards were applied to the plate precoated with capture antibody and incubated 2 hours. After multiple washing with 0.05% Tween 20 in PBS, pH 7.2 to 7.4, captured corin was detected with biotinylated polyclonal goat-anti-human corin antibody (raised against recombinant extracellular domain of corin spanning amino acids 67 to 1042) (R&D Systems). After incubation for 2 hours followed by 4 washes, the wells were incubated with streptavidin–horseradish peroxidase for 30 minutes, protected from light. After repeat washing, horseradish peroxidase substrate solution (1:1 mixture of H₂O₂ and tetramethylbenzidine, R&D Systems) was added to the plate, and the reaction was stopped after 30 minutes by 2N HCl. Optical density was measured immediately at 450 nm, using a microplate reader (Bio-Tek Instruments Inc). The assay sensitivity for corin was 30 to 50 pg/mL.

**Recombinant Pro-ANP Protein**

Pro-ANP cDNA was amplified from a Human Adult 8 Tissue GenePools cDNA library (NT Omics, Inc, San Mateo, CA) by polymerase chain reaction.31 The pro-ANP cDNA was sequenced for confirmation and cloned into the pcDNA 3.1/V5-His-TOPO vector (Invitrogen, Carlsbad, CA) using the pcDNA3.1/V5-His-TOPO TA Expression Kit (Invitrogen) to yield the plasmid, pcDNA-pro-ANP. Recombinant pro-ANP was expressed in human embryonic kidney 293 cells (American Type Culture Collection, Manassas, VA) using Lipofectin (Invitrogen) according to the manufacturer’s protocol. The pro-ANP in the conditioned medium (serum-free Opti-MEM) (Invitrogen) was measured with C-ANP enzyme immunoassay (Phoenix Pharm, Inc).

**Statistical Analysis**

Unless otherwise indicated, continuous data are presented in tabular form or in box plots indicating the medians with upper and lower quartile values. Data were analyzed by nonparametric methods (Mann-Whitney tests and Spearman rank correlation rₛ). A 2-tailed probability value <0.05 was considered statistically significant.

**Results**

For the patients with heart failure, the mean BNP level on hospital admission was 1940 pg/mL (Table), which is markedly higher than the upper limit of normal in our hospital (<100 pg/mL). The mean age of patients with heart failure was 49 years, and 57% were men. Half of the patients with heart failure had ischemic cardiomyopathy and half had dilated cardiomyopathy. Most (93%) had severe heart failure symptoms (New York Heart Association class III and class IV). The median ejection fraction of 18% was significantly reduced.

In the initial immunoassay, corin was undetectable in the plasma from several patients with heart failure, although it was readily measured in normal plasma samples. To increase the sensitivity of the test, we reconfigured the immunoassay to remove ballast proteins.32 Subsequently, corin was measurable in all subjects. The median plasma corin level was 7.6-fold lower in patients with heart failure than in normal control subjects (180 pg/mL versus 1368 pg/mL, P<0.01; Figure 2). In immunoassays using our previously reported anticoarin monoclonal antibodies,3 we also found that corin levels were markedly lower in patients with heart failure (data not shown). There were no significant differences in median corin levels between men and women (286 versus 99 pg/mL, P=0.35).

Lower corin levels may signify a reduced capacity to cleave pro-ANP in patients with heart failure. An immuno-
To assess the cleavage of pro-ANP, we developed an assay that allowed us to measure separately the levels of pro-ANP and N-ANP, a biologically stable cleavage product. Plasma samples were treated with a control, nonspecific antibody or with an antibody directed against C-ANP–related peptides to immunodeplete or remove ANP and pro-ANP. The C-ANP antibody completely removed ≈1.4 nmol/L of C-ANP–related peptides from plasma (which exceeded the pro-ANP in our samples; see below), but the control antibody did not (Figure 3B). Pretreatment with the C-antibody was specific in that it did not affect levels of N-ANP peptides measured by comparison to pretreatment with the control antibody (Figure 3C). The remaining N-ANP peptide was then measured in the plasma immunodepleted of C-ANP–related peptides. In the patients with heart failure, the amount of cleaved pro-ANP (N-ANP) rose as the total levels of pro-ANP and N-ANP increased ($r_s=0.58$, $P<0.03$). In normal plasma, essentially all pro-ANP was cleaved to N-ANP, and the circulating pro-ANP was not significantly different from 0 ng/mL ($P=0.18$). However, in the patients with heart failure, the levels of uncleaved pro-ANP were significantly higher than in normal plasma (Figure 3D, $P<0.01$), indicating that corin cleavage of pro-ANP was impaired in these patients. Pro-ANP could be detected in heart failure plasma but not in normal plasma by immunoblotting (Figure 3E).

After cleavage of pro-ANP, ANP acts on cells through the natriuretic peptide receptor A to increase cGMP levels and execute its biological effects (Figure 1). Plasma levels of cGMP were much higher (20-fold) in patients with heart failure than in normal individuals (150 versus 7.6 pmol/mL, $P<0.01$, Figure 4). Still, in these patients with heart failure, there was no significant correlation between the levels of cGMP and levels of N-terminal ANP-related peptides as measured by a conventional immunoassay ($r_s=-0.47$, $P=0.09$). In addition, there was no significant relationship between levels of cGMP and levels of pro-ANP ($r_s=-0.42$, $P=0.14$). However, there was a significant positive correlation between the fractional amount of cleaved pro-ANP and cGMP levels ($r_s=0.59$, $P<0.03$).

**Discussion**

ANP is an important regulator of physiological volume in heart failure through its effects on salt and water excretion.\(^3\)\(^3\)
Although patients with severe heart failure have high levels of ANP-related peptides and high levels of cGMP, our study and others have shown that there is no correlation between cGMP levels and total ANP-related peptides. We postulated that one explanation for the loss of the relationship between levels of ANP-related peptides and cGMP could be that corin levels and pro-ANP cleavage were reduced in severe heart failure. Consistent with this notion, in normal plasma, corin was readily detectable (Figure 2) and pro-ANP was absent because it was fully cleaved to N-ANP (Figure 3D). By comparison, in plasma from patients with heart failure, corin was markedly decreased (Figure 2) and pro-ANP was readily detected because it was not all cleaved to N-ANP (Figure 3D). Still, in the patients with heart failure, cGMP levels were positively correlated with the levels of uncleaved pro-ANP, which suggests that at the cellular level, patients retain some degree of responsiveness to biologically active forms of ANP. Supporting this notion, recent studies in patients with severe heart failure have shown that infusions of ANP (carperitide) increase cGMP levels, which indicates that these patients retain responsiveness to biologically active forms of ANP at the cellular and receptor level.

In addition to decreased corin levels and decreased pro-ANP cleavage, other defects not examined in this study could occur in the natriuretic peptide system that may contribute to heart failure such as alterations in NPR clearance and signaling, the bioavailability of natriuretic peptides, and the degradation of natriuretic peptides. While this article was in review, a retrospective study by Rame et al. found that a polymorphism in corin I555 (P568) was associated with lower BNP and pro-BNP levels as well as worse outcomes in the A-HeFT study. It has been suggested that in some patients with severe heart failure, the responsiveness of the kidney to increasing levels of ANP-related peptides is diminished, although vasodilatory effects persist. Renal hyporesponsiveness to ANP has been attributed to many potential factors including the counterregulatory effects of the renin-angiotensin-aldosterone sympathetic system.

There are limitations to the conclusions that can be drawn from this study. Because our study focused on acute heart failure by comparison to normal control subjects (blood donors), we are unable to determine whether changes in circulating corin levels and altered natriuretic processing are also seen in individuals with chronic heart failure, impaired systolic function without heart failure, or other cardiomyopathies or conditions. The relatively small sample in this study may have reduced our statistical power to detect correlations between levels of corin expression and age, sex, or other variables. Because of limited information on the control subjects, we are unable to determine whether other factors besides heart failure account for the differences we observed. In the absence of myocardial expression studies, we are unable to determine whether reduced corin levels reflect diminished cardiac production, cleavage, and so forth.

These studies demonstrate a plausible link between levels of uncleaved pro-ANP and low circulating corin in these patients with heart failure. Corin is a transmembrane protease originally identified in cardiomyocytes by homology to serine proteases and LDL-like molecules. Although corin can cleave pro-ANP and pro-BNP in vitro, there is strong evidence that corin cleaves pro-ANP in vivo. In contrast, pro-BNP appears to be cleaved in secretory granules in the heart, and the relationship between corin cleavage of pro-BNP and heart failure is unknown. Mice lacking corin have mild hypertension and lack detectable ANP. Polymorphisms in the corin gene have been associated with increased risk of hypertrophy in the setting of systolic hypertension. Many of these polymorphisms are associated with decreased activation of corin (zymogen) and thereby decreased corin activity. Although there are no reports of circulating corin levels in humans, other transmembrane and matrix proteins such as P-selectin, matrix metalloproteases, and their endogenous tissue inhibitors circulate in the blood and have pathophysiological significance in cardiovascular disease. Many of these molecules retain biological activity. Although we were unable to assess the proteolytic activity of corin in our samples (because of the addition of inhibitors to prevent proteolysis of pro-ANP and corin), it has been shown that soluble forms of recombinant corin cleave recombinant pro-ANP molecules in human plasma. Because the heart is the primary site for the production of corin, decreased plasma corin levels may reflect myocardial disease, but additional studies will be required to determine the linkage between myocardial corin expression, plasma corin levels, and corin activity. The reduced plasma levels of corin may be due to diminished cardiac expression of this protein, enhanced protein cleavage, or production of splice variants that lack transmembrane domains.

This small study is the first to evaluate the corin-ANP system in humans, and larger studies in more diverse populations will be necessary to generalize our findings. Still, the ability to accurately measure both the cleaved and uncleaved forms of pro-ANP should provide further insights into the physiological and pathological regulation of the corin-natriuretic system. These assays may identify patients for whom acute decompensated heart failure is the outcome of impaired pro-ANP cleavage. They may also provide a means for phenotyping individuals for personalized treatment with ANP or other therapies. In addition, levels of circulating corin may

Figure 4. Levels of cGMP and cleaved pro-ANP in patients with heart failure. Box plot shows median, upper, and lower quartiles of cGMP level in plasma of individuals with heart failure and normal human plasma.

The observation that patients develop worsening salt and water overload despite very high levels of ANP-related peptides has been perplexing. Indeed, the severity of heart failure is linked to levels of ANP-related peptides. Although vasodilatory effects persist. Renal hyporesponsiveness to ANP-related peptides is diminished, with severe heart failure, the responsiveness of the kidney to increasing levels of ANP-related peptides is diminished, although vasodilatory effects persist. Renal hyporesponsiveness to ANP has been attributed to many potential factors including the counterregulatory effects of the renin-angiotensin-aldosterone sympathetic system.

There are limitations to the conclusions that can be drawn from this study. Because our study focused on acute heart failure by comparison to normal control subjects (blood donors), we are unable to determine whether changes in circulating corin levels and altered natriuretic processing are also seen in individuals with chronic heart failure, impaired systolic function without heart failure, or other cardiomyopathies or conditions. The relatively small sample in this study may have reduced our statistical power to detect correlations between levels of corin expression and age, sex, or other variables. Because of limited information on the control subjects, we are unable to determine whether other factors besides heart failure account for the differences we observed. In the absence of myocardial expression studies, we are unable to determine whether reduced corin levels reflect diminished cardiac production, cleavage, and so forth.

These studies demonstrate a plausible link between levels of uncleaved pro-ANP and low circulating corin in these patients with heart failure. Corin is a transmembrane protease originally identified in cardiomyocytes by homology to serine proteases and LDL-like molecules. Although corin can cleave pro-ANP and pro-BNP in vitro, there is strong evidence that corin cleaves pro-ANP in vivo. In contrast, pro-BNP appears to be cleaved in secretory granules in the heart, and the relationship between corin cleavage of pro-BNP and heart failure is unknown. Mice lacking corin have mild hypertension and lack detectable ANP. Polymorphisms in the corin gene have been associated with increased risk of hypertrophy in the setting of systolic hypertension. Many of these polymorphisms are associated with decreased activation of corin (zymogen) and thereby decreased corin activity. Although there are no reports of circulating corin levels in humans, other transmembrane and matrix proteins such as P-selectin, matrix metalloproteases, and their endogenous tissue inhibitors circulate in the blood and have pathophysiological significance in cardiovascular disease. Many of these molecules retain biological activity. Although we were unable to assess the proteolytic activity of corin in our samples (because of the addition of inhibitors to prevent proteolysis of pro-ANP and corin), it has been shown that soluble forms of recombinant corin cleave recombinant pro-ANP molecules in human plasma. Because the heart is the primary site for the production of corin, decreased plasma corin levels may reflect myocardial disease, but additional studies will be required to determine the linkage between myocardial corin expression, plasma corin levels, and corin activity. The reduced plasma levels of corin may be due to diminished cardiac expression of this protein, enhanced protein cleavage, or production of splice variants that lack transmembrane domains.

This small study is the first to evaluate the corin-ANP system in humans, and larger studies in more diverse populations will be necessary to generalize our findings. Still, the ability to accurately measure both the cleaved and uncleaved forms of pro-ANP should provide further insights into the physiological and pathological regulation of the corin-natriuretic system. These assays may identify patients for whom acute decompensated heart failure is the outcome of impaired pro-ANP cleavage. They may also provide a means for phenotyping individuals for personalized treatment with ANP or other therapies. In addition, levels of circulating corin may
have additional diagnostic and prognostic value as a surrogate marker in individuals with suspected heart disease.

Acknowledgments
We thank Michael Konomos for diagram preparation.

Sources of Funding
This work was supported in part by the National Institutes of Health (HL58496 and HL78562 to Dr Reed) and by an American Heart Association grant (SDG 083576N) and a startup grant from the Medical College of Georgia (to Dr Gladysheva).

Disclosures
Medical College of Georgia has recently applied for patents related to this research.

References
41. Rame JE, Tam SW, McNamara D, Worcel M, Sabolinski ML, Wu AH, Dries DL. Dysfunctional corin i555(p568) allele is associated with...


Decompensated Heart Failure Is Associated With Reduced Corin Levels and Decreased Cleavage of Pro-Atrial Natriuretic Peptide
Uzoma N. Ibebuogu, Inna P. Gladysheva, Aiilyan K. Houng and Guy L. Reed

Circ Heart Fail. 2011;4:114-120; originally published online January 7, 2011;
doi: 10.1161/CIRCHEARTFAILURE.109.895581

Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/4/2/114

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/