Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in children and the most common indication (64%) for heart transplantation in children over the age of 5 years. It also represents a common indication for transplant in infants (31%). With an annual incidence of 0.34 to 1.13 per 1,000,000 children, the etiology of DCM is varied. Nearly two thirds of cases of DCM in children are idiopathic; the remainder are secondary to numerous factors, including familial, myocarditis, metabolic, or neuromuscular disease and malformation syndromes. Unfortunately, despite the introduction of diuretics, ACE-inhibitors, and β-blockers, the prognosis of this disease remains poor, and organ survival in children with DCM has changed little in the last 20 years. Cardiac transplantation is currently the only effective treatment for end stage heart failure associated with DCM.

Background—We hypothesized that children with dilated cardiomyopathy who require hospital admission are at increased risk for death or transplantation during their first hospitalization and in the first year that follows. We also assessed the value of routine data collected during that time to predict death or the need for transplantation prior to discharge and within 1 year of admission.

Methods and Results—We conducted a retrospective review of 83 pediatric patients with dilated cardiomyopathy whose initial hospitalization fell between 2004 and 2009. The mean age at hospitalization was 7 years. The majority of patients demonstrated moderate or severe left ventricular dysfunction on initial echocardiogram (80%) and/or the need for intravenous inotropes within 7 days of hospital admission (69%). Five patients (6%) died, and 15 (18%) were transplanted in the initial hospitalization. At 1 year, 11/71 (15%) had died, and 27/71 (38%) were transplanted. The overall freedom from death, transplantation, or rehospitalization at 1 year following admission was 21%. Fractional shortening, left ventricular ejection fraction, serum cholesterol, uric acid, mixed venous saturation, and atrial filling pressures were all predictive of death or transplantation during the initial hospitalization. Left ventricular ejection fraction was predictive of death or transplantation at 1 year.

Conclusions—The first hospitalization for dilated cardiomyopathy marks a period of high risk for clinical decline, end stage heart failure, and the need for cardiac transplantation. Echocardiographic function and hemodynamic and serum measurements may aid in predicting outcomes. Despite medical management, most patients will be rehospitalized and/or require cardiac transplantation within 1 year of admission. (Circ Heart Fail. 2012;5:437-443.)

Key Words: cardiomyopathy ■ heart failure ■ hospitalization ■ outcomes ■ pediatrics
Anthracycline toxicity was diagnosed when the characteristic features of DCM were discovered following the exposure to at least 150 g/m² of anthracycline drugs. Neuromuscular and metabolic disorders were defined either by the presence of a known genetic mutation and/or by the presence of characteristic clinical features. Patients with LV noncompaction were excluded from the study cohort because they also demonstrated the echocardiographic appearance of DCM (LV dilatation and reduced systolic function).

Methods

Study Cohort and Data Source

We identified and performed a retrospective chart review on 83 patients with DCM who had at least 1 hospitalization at Lucile Packard Children’s Hospital at the time of, or subsequent to, their first hospitalization with DCM. Measures of severity of disease, including duration of hospitalization and at 1 year of follow-up. To our knowledge, this contemporary and homogenous cohort is the largest single-institution experience reported for hospitalized pediatric patients with DCM published to date.

Analysis

The primary measure studied was death or transplantation during the first hospitalization. Measures of severity of disease, including duration of hospitalization and at 1 year of follow-up. To our knowledge, this contemporary and homogenous cohort is the largest single-institution experience reported for hospitalized pediatric patients with DCM published to date.

Clinical Data Collection

Baseline demographics, including age, gender, race, and primary/secondary diagnoses were obtained from the electronic medical record. Outside hospital data, including length of stay, level of care, and total intubation days were obtained from outside hospital records incorporated into the patient’s Lucile Packard Children’s Hospital medical record. The first set of laboratory studies reported in the medical record was recorded, unless they occurred beyond the seventh hospital day, in which case they were excluded. Qualitative and quantitative data from the first echocardiogram was collected for all patients, except those already on ventilator assist devices or extracorporeal membrane oxygenator.

Table 1. Baseline Characteristics of Patients Admitted With DCM (n=83)

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Median age, y</th>
<th>Range, 0–22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, female</td>
<td>35</td>
<td>42%</td>
</tr>
<tr>
<td>First admission concordant with diagnosis</td>
<td>64</td>
<td>77%</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td>White</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hispanic/Latino</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Asian/Hawaiian/Pacific Islander</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>3</td>
</tr>
</tbody>
</table>

Severity of illness

- Qualitative LVEF: moderate 64/80 | 80%
- Inotropic requirement in the first 7 hospital days: 57 | 69%
- Admitted directly to ICU: 66 | 80%
- Median ICU stay, days: 22.5 | Range, 1–250
- Median length of hospital stay, days: 33.8 | Range, 1–284
- Endotracheal intubation: 37 | 45%

DCM indicates dilated cardiomyopathy; y, years; ICU, intensive care unit; LPCH, Lucile Packard Children’s Hospital; LVEF, left ventricular ejection fraction.

Table 2. Primary Diagnoses Associated With DCM (n=83)

<table>
<thead>
<tr>
<th>Primary Diagnosis</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic</td>
<td>32 (39)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>7 (8)</td>
</tr>
<tr>
<td>Arrhythmia/heart block</td>
<td>6 (7)</td>
</tr>
<tr>
<td>Familial</td>
<td>5 (6)</td>
</tr>
<tr>
<td>LV noncompaction*</td>
<td>6 (7)</td>
</tr>
<tr>
<td>Anthracycline toxicity</td>
<td>6 (7)</td>
</tr>
<tr>
<td>Neuromuscular/metabolic</td>
<td>7 (8)</td>
</tr>
<tr>
<td>Other</td>
<td>14 (17)</td>
</tr>
</tbody>
</table>

*DCM indicates dilated cardiomyopathy; LV, left ventricular.

Patients with LV noncompaction were included in the study cohort because they also demonstrated the echocardiographic appearance of DCM (LV dilatation and reduced systolic function).
Hollander et al

Pediatric DCM First Hospitalization Outcomes

439

cases in the catheterization data, an imputed value equal to the group mean was substituted for all missing values of mixed venous saturation.

Data were collected using REDCap (Version 3.4.1, Vanderbilt University), a web-based application designed to support data capture for research studies. All statistical analysis, including a Kaplan–Meier curve for 1-year freedom from death or transplantation was conducted using STATA (Version 10; STATA Corp). For Kaplan–Meier analysis, patients who did not experience one of the specified outcomes were censored at the time of their most recent clinical encounter.

Results

Between January 1, 2004, and December 31, 2009, 83 patients with DCM were admitted to Lucile Packard Children’s Hospital. Baseline characteristics are described in Table 1. Forty-two percent were female (35 patients), and the median age at first admission was 7 years (range 0 to 22 years). Thirty-seven (45%) identified as Caucasian; 3 (4%), African-American; 23 (28%), Hispanic/Latino; and 17 (20%), Asian/Pacific Islander. In 64 patients (77%), the diagnosis of DCM was made at the time of hospital admission. Fifty patients (60%) were transferred from another hospital. Forty-two patients (51%) were transferred directly from an outside intensive care unit. The majority of patients (66 patients; 80%) were critically ill as defined by direct admission to our intensive care unit.

The underlying diagnosis was idiopathic or familial DCM in 32 (39%) patients; the other 51 patients had DCM associated with various arrhythmic, genetic, infectious, neuromuscular, rheumatologic, or other disease processes (Table 2). The majority of patients (79/83; 96%) presented with symptoms (Table 3). Only 4 patients were discovered incidentally to have DCM on surveillance echocardiogram.

Laboratory and clinical measurements at the time of admission are summarized in Table 4. Although the mean serum sodium level was within the normal range, many patients presented with hyponatremia, with 21/83 (25%) patients presenting with a sodium <125 mmol/L. Mean serum creatinine was only mildly elevated at 1.0±1.7 mg/dL. Mean N-terminal B-type natriuretic peptide was markedly elevated at 9384±8714 pg/mL but was measured in a comparatively small number of patients (n=19).9

Of the 80 patients who had echocardiograms performed on admission, the mean LVEF was 28±15%, indicating severely reduced systolic function. Qualitative interpretation yielded similar results, in that 64 (80%) subjects had moderately to severely reduced left ventricular function as described in the echo report. Fifty-seven patients (69%) received inotropic support within the first week of admission. Endotracheal intubation was performed in 37 patients (45%), including 24 (29%) who were already intubated at the time of admission. Median stay in the intensive care unit was 22.5 days (range 1 to 250 days), with median hospitalization duration of 33.8 days (range 1 to 284 days). Fifteen patients (18%) underwent heart transplantation, and 5 patients (6%) died during the initial hospitalization. Follow-up was complete at 1 year for 71 patients, of whom, 27 (38%) were transplanted and 11 (15%) had died. (Figure)

Univariate analysis for clinical, laboratory, echocardiographic, and catheterization data comparing those who experienced death or transplantation (organ death) during the initial hospitalization versus those who survived to discharge without transplantation (organ survival) is summarized in Table 5. LVEF (20% for organ death versus 31% for

Table 3. Presenting Signs and Symptoms at First Hospitalization for DCM (n=83)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortness of breath</td>
<td>50</td>
</tr>
<tr>
<td>GI upset/abdominal pain</td>
<td>37</td>
</tr>
<tr>
<td>Fatigue</td>
<td>31</td>
</tr>
<tr>
<td>Cough</td>
<td>19</td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>12</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>12</td>
</tr>
<tr>
<td>Ascites</td>
<td>11</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>8</td>
</tr>
<tr>
<td>Syncope</td>
<td>0</td>
</tr>
<tr>
<td>No symptoms (incidental discovery of DCM)</td>
<td>5</td>
</tr>
</tbody>
</table>

DCM indicates dilated cardiomyopathy; GI, gastrointestinal.

Percentages add up to >100% because some patients presented with >1 symptom/sign.

Table 4. Laboratory Indices of Patients Admitted with DCM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Range</th>
<th>Normal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Sodium</td>
<td>137</td>
<td>4.7</td>
<td>137</td>
<td>121–155</td>
<td>135–145 mmol/L</td>
</tr>
<tr>
<td>NT-BNP</td>
<td>9384</td>
<td>8714</td>
<td>6389</td>
<td>1187–30 000</td>
<td><14.75 pmoL/L</td>
</tr>
<tr>
<td>Creatinine</td>
<td>1</td>
<td>1.7</td>
<td>0.6</td>
<td>0.1–14.11</td>
<td>(Age-dependent)</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>12.1</td>
<td>2.1</td>
<td>12.3</td>
<td>7.8–17.2</td>
<td>11.7–15.7 g/dL</td>
</tr>
<tr>
<td>RDW</td>
<td>14.7</td>
<td>3.2</td>
<td>14</td>
<td>10.7–32.8</td>
<td>11.5–14.5%</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>95</td>
<td>19</td>
<td>95</td>
<td>50–154</td>
<td>(Age-dependent)</td>
</tr>
<tr>
<td>Heart rate</td>
<td>125</td>
<td>33</td>
<td>122</td>
<td>65–252</td>
<td>(Age-dependent)</td>
</tr>
<tr>
<td>Uric acid</td>
<td>6.9</td>
<td>3.5</td>
<td>6</td>
<td>2–16.5</td>
<td><8.0 mg/dL</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>117</td>
<td>45</td>
<td>112</td>
<td>47–303</td>
<td><170 mg/dL</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>109</td>
<td>82</td>
<td>85</td>
<td>30–488</td>
<td><150 mg/dL</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>28</td>
<td>15</td>
<td>27</td>
<td>2–53</td>
<td>55–65%</td>
</tr>
</tbody>
</table>

DCM indicates dilated cardiomyopathy; NT-BNP, N-terminal B-type natriuretic peptide; RDW, red cell distribution width; BP, blood pressure.
survivors; $P=0.006$) and FS (9% versus 16%; $P=0.004$) calculated on the first echocardiogram achieved the most statistical significance. Serum cholesterol levels were significantly lower (97 versus 122 mg/dL; $P=0.03$) and serum uric acid levels were significantly higher (8.7 versus 6.3 mg/dL; $P=0.01$) in patients who experienced organ death during the initial hospitalization. Of the 31 patients who underwent cardiac catheterization during the first hospitalization, mixed venous saturation was significantly lower (53% versus 67%; $P=0.004$). Right atrial and pulmonary capillary wedge pressures were also predictive of organ death during the first hospitalization ($P=0.02$ and $P=0.04$, respectively).

Twenty-one patients underwent right ventricular endomyocardial biopsy as part of their catheterization. Of these, 17 (81%) showed fibrosis, 1 (5%) was consistent with anthracycline toxicity, 1(5%) showed lymphocytic infiltrate consistent with acute myocarditis as well as fibrosis, and 2 (10%) were read as normal. Biopsy data were not associated with hospital outcome.

In multivariable analysis of hospital outcome data, FS and uric acid achieved significance. For the outcome variable of organ death at 1 year from index admission, univariate analysis for clinical, laboratory, echocardiographic, and catheterization data are summarized in Table 6. Only the LVEF calculated on initial echocardiogram was significantly lower in patients who experienced organ death within 1 year of the index admission (22% versus 32%; $P=0.001$).

Discussion

We found that children with DCM who require hospital admission are at very high risk for death or transplantation.
During their first hospitalization and in the first year following hospital admission. Twenty-four percent of patients with DCM died or were transplanted during the index hospitalization. FS, LVEF, serum cholesterol, uric acid, mixed venous saturation, and atrial filling pressures were all predictive of hospital outcome. Fifty-four percent of patients died or were transplanted within 1 year of the index admission, with LVEF being predictive of 1-year outcome. Hospital readmission for nontransplanted survivors was common.

When compared with outcomes studies of pediatric patients with DCM as a whole, the results of the current study suggest that first-time hospitalized patients are at heightened risk for death or transplantation. Tsirka et al reported a 70% 1-year freedom from death or transplantation in 91 children following diagnosis of DCM. Using data from the Pediatric Cardiomyopathy Registry, Towbin et al reported that the freedom from death or transplantation in pediatric patients with cardiomyopathy was 69% at 1 year from diagnosis, somewhat more favorable than our finding of 49% for hospitalized patients. In their cohort (excluding those with neuromuscular disease), older age at diagnosis, cause, congestive heart failure (CHF), and FS z-score were all predictive of death or transplantation. Furthermore, patients with CHF were 4 times more likely to experience death or transplantation within 1 year of diagnosis. Those with CHF are likely similar to our study cohort, given that all of our patients were hospitalized for CHF at the study entry point. Moreover, their finding that FS was an independent risk factor for poor outcome is consistent with ours.

Several clinical, serological, and echocardiographic parameters have been used for prognostic modeling for mortality and/or rehospitalization in adults with heart failure. The Seattle Heart Failure study has recently offered a predictive model that includes New York Heart Association class, ischemic etiology, medications, blood pressure, as well as several serological indices, including percent lymphocytes, serum creatinine, and uric acid, and cholesterol to predict 1-, 2-, and 3-year survival in adults with CHF; and a separate model has also been offered to predict 30-day and 1-year mortality among adults hospitalized for heart failure. Nevertheless, risk stratification remains a serious challenge, and prognostic models for adult populations have not been reliable when applied to pediatric patients. Patel and colleagues recently developed a model that incorporates percent lymphocytes, serum creatinine, and serum sodium to predict death or the need for transplant for pediatric patients hospitalized for heart failure; however, they did not extrapolate their data to include rehospitalization or 1-year outcomes. Furthermore, their study included a heterogeneous population of patients with cardiomyopathies as well as congenital heart disease. As it is not known whether these groups behave similarly, interpretation of this model is challenging.

We found that specific echocardiographic and serological indices were predictive of outcome in children hospitalized with DCM. Both quantitative and qualitative LVEF and FS were strongly predictive of outcome for the initial hospitalization, and LVEF was strongly predictive of 1-year outcome. LVEF has been identified previously as a predictor for death, transplantation, or rehospitalization in pediatric patients with DCM.

Low serum cholesterol and high serum uric acid were also predictive of death/transplant during the first hospitalization, which has been previously reported in adult populations but has not been demonstrated in children. Uric acid is elevated with oxidative stress, leads to the production of free radicals via the xanthine oxidase system, is elevated in states of cytokine-activated inflammation, and is a general marker for cell death. Low serum cholesterol may represent depletions in metabolic reserve, as well as poor nutritional status, both of which may serve as markers of either long-standing or severe CHF, and the body’s reduced capacity to resist the natural progression of the disease. Serum sodium has been identified as a predictor for hospital length of stay, in-hospital mortality, and 60-day mortality and/or rehospitalization in adults with heart failure. Although mean N-terminal B-type natriuretic peptide was also markedly elevated, and prior studies have suggested that it may be a predictor of adverse outcomes in children with heart failure, the current study had too few observations to detect a difference between groups. Our finding that red cell distribution width was not predictive of freedom from death...
or transplantation during the initial hospitalization contrasts prior reports identifying elevated red cell distribution width as an independent predictor of morbidity and mortality in adults with symptomatic heart failure.16

Of our 83 patients, 79 presented with common symptoms, including fatigue, shortness of breath, or gastrointestinal upset, with no patients presenting with syncope and only 7 presenting with cardiac arrest. The incidental discovery of DCM was uncommon. Conversely, patients were usually quite ill at the time of admission, with the majority requiring inotropic medications and nearly half requiring endotracheal intubation, although this effect may have been influenced by the fact that the majority of our patients were transferred from another hospital (60%), often specifically for an escalation in care.

Although cardiac catheterization is not necessarily a component of the initial evaluation for patients hospitalized with DCM, 31/83 (37%) patients underwent catheterization during the initial hospitalization, either as part of a pretransplant work-up, diagnostic biopsy (21/31), or left atrial decompression after extracorporeal membrane oxygenation cannulation. The timing of the catheterization was therefore variable and did not necessarily occur at the beginning of the hospitalization. Mixed venous saturation was predictive of death/transplant during the initial hospitalization, likely secondary to increased tissue oxygen extraction in the low cardiac output state. Right atrial and pulmonary capillary wedge pressures were also elevated, indicating diastolic dysfunction. Reports from earlier smaller series are mixed as to whether hemodynamic data collected during cardiac catheterization is useful in predicting hospital outcomes in children with heart failure.29,30 Biopsy data, although useful to confirm the diagnosis, was of little prognostic value.

The current study was limited by its retrospective nature, and it is possible that we did not capture every patient with DCM who had been hospitalized at our institution. Additionally, data collected during the initial hospitalization was not collected at uniform times. Lastly, although we limited our study to patients with DCM, our study population was heterogenous with regard to the etiologies of DCM. Only 32/83 (39%) of patients had idiopathic or familial forms of DCM, the remainder presented with a variety of diagnoses, including neuro-muscular/metabolic defects, infections, autoimmune disease, and primary arrhythmias. Unfortunately, there were too few patients in each subgroup to allow subgroup analysis, and differences in outcomes have been shown to differ depending on the etiology of DCM.31,32

The current study demonstrates that children with DCM are at particular risk for death or the need for cardiac transplantation during the initial hospitalization and within 1 year following the index admission. FS/LVEF, serum cholesterol, uric acid, and hemodynamic data may be predictive of outcome. Data on this clinically homogeneous, contemporary patient population at a uniform and easily recognizable study entry point has not been previously reported. For nontransplanted hospital survivors, there is a high incidence of rehospitalization, death, or transplantation within 1 year. Patients with significant risk factors may benefit from closer outpatient observation and, perhaps, earlier consideration for cardiac transplantation.

Disclosures
We thank Esther Liu, RN, FNP, and Aileen Lin, RN, FNP, for assistance with data collection for this manuscript.

References
patients who may benefit from closer outpatient observation, and, perhaps, earlier consideration for cardiac transplantation.

and atrial filling pressures may aid in predicting outcomes. The results of this study may aid practitioners to identify at-risk patients with chronic heart failure. J Am Coll Cardiol. 2003;42:1933–1940.

In patients with chronic heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–2587.

In patients with chronic heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–2587.

Outcomes of Children Following a First Hospitalization for Dilated Cardiomyopathy
Seth A. Hollander, Daniel Bernstein, Justin Yeh, Duy Dao, Heather Y. Sun and David Rosenthal

Circ Heart Fail. 2012;5:437-443; originally published online May 8, 2012;
doi: 10.1161/CIRCHEARTFAILURE.111.964510
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/5/4/437

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Heart Failure_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Heart Failure_ is online at:
http://circheartfailure.ahajournals.org//subscriptions/