Chronic Heart Failure Does Not Attenuate the Total Activity of Sympathetic Outflow to Skin During Whole-Body Heating

Jian Cui, PhD; John P. Boehmer, MD; Cheryl Blaha, RN; Robert Lucking, MS; Allen R. Kunselman, MA; Lawrence I. Sinoway, MD

Background—Previous studies show that the rise in skin blood flow and cutaneous vascular conductance during heat stress is substantially attenuated in chronic heart failure (CHF) patients. The mechanisms responsible for this finding are not clear. In particular, little is known regarding the responses of skin sympathetic nerve activity (SSNA) that control the skin blood flow during heat stress in CHF patients. We examined the effects of a modest heat stress to test the hypothesis that SSNA responses could be attenuated in CHF.

Methods and Results—We assessed SSNA (microneurography) from the peroneal nerve and skin blood flow (forearm laser Doppler) in 9 patients with stable class II–III CHF and in matched healthy subjects during passive whole-body heating with a water-perfused suit. Whole-body heating induced similar increases in internal temperature (±0.6°C) in both groups. Whole-body heat stress evoked similar SSNA activation in CHF patients (Δ891±110 U/min) and the control subjects (Δ787±84 U/min; P=0.66), whereas the elevation in forearm cutaneous vascular conductance in patients with CHF was significantly lower than that in healthy control subjects (Δ131±29% vs Δ623±131%; P=0.001).

Conclusions—The present data show that SSNA activation during a modest whole-body heat stress is not attenuated in CHF. Thus, the attenuated skin vasodilator response in CHF patients is not attributable to a reduction in total activity of sympathetic outflow to skin. (Circ Heart Fail. 2013;6:271-278.)

Key Words: autonomic ■ heart failure ■ regional blood flow ■ vasodilation

Patients with heart disease are particularly vulnerable to injury from heat stress.1 For example, excess deaths were noted during a heat wave,2,3 and cardiovascular diseases are a major contributor to the excess mortality noted during a heat wave.2,3 Moreover, adverse cardiac events occur at higher frequency during summer months than during spring and autumn.1 The mechanisms causing this phenomenon are not understood thoroughly.

Clinical Perspective on p 278

We4 and others5 have demonstrated that the rise in skin blood flow (SkBF) and cutaneous vascular conductance (CVC) evoked by whole-body heating is less in chronic heart failure (CHF) patients than that in healthy subjects. Although it may be one of the ways the body adapts to heart failure, the attenuated rise in CVC may be a key factor contributing to the heat-related injury in those with cardiovascular disease. The mechanisms contributing to the impaired rise in cutaneous conductance are not thoroughly understood.

Both cutaneous vascular beds and sweat glands are innervated by the skin sympathetic nerves.6 On exposure to a warm/hot environment, the initial increase in SkBF occurs via withdrawal of the cutaneous vasoconstrictor activity.6,7 As body temperature continues to increase, the cutaneous active vasodilator system is engaged,6,9 and sudomotor activity is activated (ie, sweating).6 Thus, whole-body heat stress (WBH) increases the total activity of skin sympathetic nerve activity (SSNA)6,8 and SkBF6 in young healthy individuals. Our previous studies in normal subjects6,8,10,11 demonstrated that both total activity of SSNA and SkBF rose dramatically when whole-body heating increased core temperature by more than 0.5°C. An increase of 0.5°C in core temperature is considered a modest stressor.

SSNA responses to WBH in CHF patients have not been reported. It is well known that autonomic control is impaired in CHF patients. For example, baseline muscle sympathetic nerve activity is increased, and baroreflex function is impaired.12 Although no significant difference has been found in normothermic baseline SSNA in CHF patients and control subjects,13-15 one might speculate that autonomic adjustment to thermal challenge could be impaired in CHF patients. Specifically, because the cutaneous vasodilator response to heat stress in CHF is attenuated, it is reasonable to postulate that cutaneous sympathetic vasodilator nerve activity (as well as total SSNA) also is attenuated in CHF. Therefore, the aim of the present study was to examine the SSNA response to whole-body heating in CHF. We hypothesized that the SSNA increase with a modest heat stress would be attenuated in CHF patients as compared with control subjects.

Received April 11, 2012; accepted January 31, 2013.
From the Penn State Hershey Heart and Vascular Institute, Hershey, PA (J.C., J.P.B., C.B., R.L., L.I.S.); and Division of Biostatistics and Bioinformatics, Department of Public Health Sciences (A.R.K.), Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA.
Correspondence to Lawrence I. Sinoway, MD, Penn State Hershey Heart and Vascular Institute, H047, Penn State College of Medicine, 500 University Dr, Hershey, PA 17033. E-mail isnoway@hmc.psu.edu
© 2013 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org
DOI: 10.1161/CIRCHEARTFAILURE.112.000135

271
Methods

Subjects
Nine patients with CHF (male; age, 61±2 years; height, 180±3 cm; weight, 101±7 kg), and 9 age, sex and race-matched healthy control subjects (male; age, 61±2 years; height, 177±1 cm; weight, 84±3 kg) participated in this study.

Patients with CHF were eligible on the basis of the following inclusion criteria: (1) New York Heart Association class II–III after stabilization; (2) ejection fraction <40% determined by 2-dimensional echocardiography; and (3) no underlying aortic outflow obstruction as assessed by echocardiography. The mean ejection fraction of the CHF patients was 28±3%. Patients were recruited from the Penn State Hershey Heart and Vascular Institute, Hershey, PA. Patients with ischemic and nonischemic pathology were considered eligible for the study. Patients were excluded if they had a recent myocardial infarction, unstable angina, or any angina without dyspnea or exertional fatigue. Patients with serious arrhythmias and other systemic diseases, such as liver disease, renal failure, diabetes mellitus, lung diseases, including asthma and chronic obstructive pulmonary disease, were also excluded. Table 1 lists the patients’ conditions and the medication class. All matched control subjects were healthy, and none were taking any medication.

Because of safety concerns for the CHF patients, β-blockers were not withheld. All other medications, including angiotensin-converting enzyme inhibitors and diuretics, were held after midnight before the study. All patients and the control subjects refrained from caffeine, alcohol, and exercise 24 hours before the study. The experimental protocol was approved by the Institutional Review Board of the Milton S. Hershey Medical Center and conformed to the Declaration of Helsinki. Each subject had the purposes and risks of the protocol explained to them before written informed consent was obtained.

Measurements
Internal (ie, core) temperature (Tcore) was indexed from an ingestible pill telemetry system (HTI Technologies, Palmetto, FL) that was swallowed by volunteers (n=12) =1.5 to 2 hours before data collection, or from a thermocouple placed in the sublingual sulcus (n ≈ 1.5 to 2 hours before data collection). The temperature of the water perfusing the suit was elevated 0.5°C; in healthy individuals, this is sufficient to cause SSNA activation and pronounced cutaneous vasodilation and sweating.8,10,11 Once Tcore was elevated ≈0.5°C, the temperature of the water perfusing the suit was slightly reduced to attenuate the rate of increase in Tcore. Six minutes of data were then obtained as WBH data (Figure 1).

Data Analysis
Data were sampled at 200 Hz via a data acquisition system (MacLab, AD Instruments, Castle Hill, Australia). SSNA bursts were first identified in real time by visual inspection of the trace, coupled with the burst sound from the audio amplifier. SSNA bursts were further analyzed offline with visual determination. In the case of complex multipeaked bursts of SSNA, peaks that were separated by a decrease in voltage to less than one half of the smaller peak were counted as separate bursts.14 Integrated SSNA was normalized by assigning a value of 100 to the mean amplitude of the largest sympathetic bursts (top 10% of identified bursts) during normothermic baseline.4,5 Subsequent bursts in the neuronogram were normalized against that value. To assess total SSNA activity, the baseline was carefully identified, and the area of the integrated nerve activity nonsynchronous with the heartbeat; (2) irregular burst activity; and (3) generation of reflex bursts during mental or somatosensory stimuli (eg, loud sound and light stroking of the innervated region) and (4) absence of an increase in activity during inspiratory apnea. The nerve signal was amplified, passed through a band-pass filter with a bandwidth of 500 to 5000 Hz, and integrated with a time constant of 0.1 s (Iowa Bioengineering, Iowa City, IA). The nerve signal was routed to a computer screen and a loudspeaker for monitoring throughout the study.

Protocols
The study was conducted in a temperature-controlled room (23°C) in the morning (8:30 to 12:00). After the instrumentation, the tube-lined suit worn by the subjects was perfused with 34°C water. After 5 minutes of rest, 6 minutes of data were collected as normothermic baseline. Thereafter, whole-body heating was initiated by elevating Tsk to >38°C by perfusing warm (46°C) water through the water-perfused suit. Whole-body heating continued until Tcore increased a minimum of 0.5°C; in healthy individuals, this is sufficient to cause SSNA activation and pronounced cutaneous vasodilation and sweating.8,10,11 Once Tcore was elevated ≈0.5°C, the temperature of the water perfusing the suit was progressively increased to increase the rate of increase in Tcore. Six minutes of data were then obtained as WBH data (Figure 1).

Table 1. Clinical Findings and Medications for the Patients With Chronic Heart Failure

<table>
<thead>
<tr>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA Class</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>8</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>3</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>9</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
</tr>
<tr>
<td>β-Blocker</td>
<td>9</td>
</tr>
<tr>
<td>ACEI</td>
<td>8</td>
</tr>
<tr>
<td>ARB</td>
<td>1</td>
</tr>
<tr>
<td>Digoxin</td>
<td>2</td>
</tr>
<tr>
<td>Loop Diuretic</td>
<td>9</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>4</td>
</tr>
<tr>
<td>Aspirin</td>
<td>8</td>
</tr>
<tr>
<td>Statin</td>
<td>9</td>
</tr>
</tbody>
</table>

Medications denote medications or class of medications patients were taking; %, percentage in all patients. ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; N, subject number; and NYHA Class, the New York Heart Association Functional Classification.

Mean skin temperature (Tsk) was measured via the weighted average of 6 thermocouples attached to the skin.15 To identify the increase in both Tsk and Tcore, mean body temperature (Tbody) was used in this report and was calculated as follows: 0.9 x (Tcore+0.1 x Tsk).8,15 Each volunteer was dressed in a tube-lined suit that permitted the control of Tsk by changing the temperature of the water perfusing the suit. SkBF was indexed from dorsal forearm skin using the mean values of 2 integrating flow probes of laser-Doppler flowmetry (MoorLab, Moor Instruments Ltd, Devon, UK). CVC was calculated from the ratio of the SkBF to mean arterial blood pressure. The final CVC was expressed as percentage of the normothermic baseline. Forearm sweat rate was measured from forearm skin via capacitance hygrometry (Vaisala, Woburn, MA) using the ventilated capsule method (surface area=20 cm²). The areas from which SkBF and sweat rate were measured were not covered by the suit, and the local temperature of these areas was not controlled.

Arterial blood pressure was measured by auscultation of the brachial artery (SureSigns VS3, Philips, Philip Medical System). Heart rate was monitored from the ECG (Cardicap5, Datex-Ohmeda, GE Healthcare, NJ). Respiratory frequency was monitored using piezoelectric pneumography. Multifiber recordings of SSNA were obtained with a tungsten microelectrode inserted into the common peroneal nerve. A reference electrode was placed subcutaneously 2 to 3 cm from the recording electrode. The recording electrode was adjusted until a site was found in which SSNA bursts were clearly identified using the following previously established criteria5,15,16: (1) integrated nerve activity nonsynchronous with the heartbeat; (2) irregular burst activity; and (3) generation of reflex bursts during mental or somatosensory stimuli (eg, loud sound and light stroking of the innervated region); and (4) absence of an increase in activity during inspiratory apnea. The nerve signal was amplified, passed through a band-pass filter with a bandwidth of 500 to 5000 Hz, and integrated with a time constant of 0.1 s (Iowa Bioengineering, Iowa City, IA). The nerve signal was routed to a computer screen and a loudspeaker for monitoring throughout the study.

The nerve signal was amplified, passed through a band-pass filter with a bandwidth of 500 to 5000 Hz, and integrated with a time constant of 0.1 s (Iowa Bioengineering, Iowa City, IA). The nerve signal was routed to a computer screen and a loudspeaker for monitoring throughout the study.

The nerve signal was amplified, passed through a band-pass filter with a bandwidth of 500 to 5000 Hz, and integrated with a time constant of 0.1 s (Iowa Bioengineering, Iowa City, IA).
SSNA responses over this period were observed between the groups. Statistical analyses were performed with the use of SigmaStat software (SPSS Science). SSNA, thermoregulatory, and hemodynamic variables were used to examine the following 2 main effects: (1) the effect of the heating (ie, baseline, Warm, and WBH); (2) the effects of the group (CHF or control); and the interaction between the 2 factors via repeated measures (1 factor repetition) 2-way ANOVA. When appropriate, Tukey post hoc method to adjust for multiple comparisons was used. The differences in the changes (delta) from the baseline to WBH response between the groups were evaluated via unpaired t test to further examine the effects of heating. Because our sample size was limited, we examined residual diagnostics to ensure that parametric modeling assumptions were met. Moreover, the changes from baseline to heat stress condition between the 2 groups were also evaluated using the nonparametric Mann-Whitney Rank Sum test. This was done to determine whether similar results would be obtained. A post hoc power calculation was performed via an unpaired t test. For this analysis, we assumed our study sample size, a type I error of 5%, and the observed SSNA SD in the present study. Values are reported as mean±SEM. P values <0.05 were considered statistically significant.

Results
Temperatures Change During Whole-Body Heating
Baseline temperatures were not different between the groups (Table 2). Figure 1 shows examples of Tsk, Tcore, SSNA, SkBF, and sweat rate during whole-body heating in a CHF patient and in the matched healthy control subject. Interestingly, during the initial period of heating, Tsk increased, whereas Tcore did not change or slightly decreased in some subjects. As heating continued, Tcore began to rise. During the later period of whole-body heating, Tsk was clamped at ≈38°C with the suit, whereas Tcore rose continually. As a result of controlling the Tsk and the increase in Tcore, the elevation in Tcore for the CHF patients (Δ0.62±0.03°C) for the WBH was not different from the control subjects (Δ0.60±0.06°C; P=0.38). Combined with the similar increases in Tsk in CHF patients (Δ4.3±0.3°C) and control subjects (Δ4.2±0.1°C; P=0.26), the increase in Tbody during WBH was not different between CHF patients (Δ1.0±0.1°C) and the control subjects (Δ1.0±0.1°C; P=0.16). Thus, the heat stress challenge was similar in the 2 groups.

Blood Pressure and Heart Rate Responses to Whole-Body Heating
Baseline hemodynamic variables were not different between the groups (Table 2). During heating, blood pressures dropped and heart rate rose in both CHF patients and the control subjects.
The increase in heart rate during WBH was significantly less in CHF patients (Δ10±3 beats/min) than in the control subjects (Δ19±3 beats/min; *P*=0.02), whereas the mean arterial blood pressure decrease in CHF patients (Δ8±2 mm Hg) was not significantly different from that in the control subjects (Δ6±1 mm Hg; *P*=0.16).

SSNA, CVC, and Sweating Responses to Whole-Body Heating

SSNA did not rise during the initial period of heating. As heating continued, SSNA progressively increased (Figure 1). The mean values of SSNA, CVC, and sweat rate responses as Tbody increases are illustrated in Figure 2. During the Warm period (ie, Tsk>37°C and increase in Tcore<0.2°C), SSNA and sweat rate rose from baseline in CHF patients, but not in the control groups (Figure 3). During WBH, SSNA was significantly greater than the respective baseline in both the groups, and there was no difference in the SSNA responses in the 2 groups (Figure 3). Moreover, the SSNA increase (ie, the delta from the baseline) in CHF patients (Δ29.6±1.9 bursts/min; Δ891±110 U/min) was not significantly different from the control groups (Δ27.1±2.2 bursts/min, *P*=0.20; Δ787±84 U/min, *P*=0.23).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline</th>
<th>Warm</th>
<th>WBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP, mm Hg</td>
<td>116±5</td>
<td>109±3*</td>
<td>110±3*</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>68±3</td>
<td>62±2*</td>
<td>59±3†</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>84±4</td>
<td>78±2*</td>
<td>76±3*</td>
</tr>
<tr>
<td>HR, beats/min</td>
<td>63±2</td>
<td>67±3</td>
<td>73±4*</td>
</tr>
<tr>
<td>Tsk, °C</td>
<td>33.7±0.2</td>
<td>37.6±0.2†</td>
<td>38.0±0.1*</td>
</tr>
<tr>
<td>Tcore, °C</td>
<td>36.6±0.1</td>
<td>36.8±0.1*</td>
<td>37.3±0.1*</td>
</tr>
<tr>
<td>Tbody, °C</td>
<td>36.3±0.1</td>
<td>36.8±0.1*</td>
<td>37.4±0.1*</td>
</tr>
</tbody>
</table>

*Significantly different from normothermic baseline (*P*<0.05).
†Significantly different from control subjects (*P*<0.05).

Mean arterial blood pressure (MAP) was calculated as two-thirds diastolic blood pressure (DBP) plus one-third systolic blood pressure (SBP), measured by auscultation of the brachial artery. Mean body temperature (Tbody) was calculated as follows: 0.9×Tcore+0.1×Tsk. Warm denotes an early period of heating. CHF indicates chronic heart failure; HR, heart rate; Tcore, internal temperature; Tsk, mean skin temperature; and WBH, the last 5 min of whole-body heating.

Table 2. Thermal and Hemodynamic Variables During Whole-Body Heating

![Figure 2](http://circheartfailure.ahajournals.org/)

Figure 2. Mean skin sympathetic nerve activity (SSNA), cutaneous vascular conductance (CVC), and sweat rate (SR) responses to whole-body heating. During the initial period of heating, mean skin temperature (Tsk) increased, but the internal temperature (Tcore) did not rise. In the later period of whole-body heating, Tsk was clamped at ≈38°C, whereas the Tcore increased. Mean body temperature (Tbody) was calculated as follows: 0.9×Tcore+0.1×Tsk. CHF indicates chronic heart failure.
During the Warm period, the CVC in the control subjects rose, but the CVC in CHF patients was not significantly different from baseline (Figure 3). WBH induced a significant increase in CVC in both the groups, but the CVC in CHF patients was significantly lower than that noted in the control subjects (Figure 3). Moreover, the elevation (the delta from the baseline) in CVC in CHF patients ($\Delta 131\pm29\%$) was significantly attenuated when compared with the control subjects ($\Delta 632\pm131\%; P=0.001$). WBH induced sweating in both the groups, but the sweat rate in CHF patients was lower than that of the control subjects (Figure 3).

When a Mann-Whitney Rank Sum was used, similar results (ie, $P>0.05$ for the comparisons between the 2 groups) were found for ΔTsk, $\Delta Tcore$, $\Delta Tbody$, Δ mean arterial blood pressure, ΔSSNA, and ΔCVC.

Discussion

The major finding of the present study is that despite the fact that modest WBH evokes similar increases in SSNA in CHF patients and in the control subjects, the cutaneous vasodilator response to the heat stimulus is significantly attenuated in CHF patients. These observations do not support our hypothesis that the attenuated cutaneous vasodilator responses to heat in CHF would be associated with reduced sympathetic activation.

Consistent with previous reports, the present data show that the cutaneous vasodilator responses to heat in CHF are significantly attenuated. The forearm skin, in which the SkBF was measured, was not directly heated by the suits. Thus, the observed cutaneous vasodilation was likely attributable to indirect heating via neural control mechanisms.

Classic early studies demonstrate that human skin is innervated by sympathetic vasodilator nerves, because nerve blockade prevented the large increases in SkBF that were seen with core hyperthermia in the absence of nerve blockade. Activation of the active vasodilator system is responsible for $\approx 80\%$ to 90% of the elevation in SkBF to indirect heat stress. Thus, the cutaneous vasodilation during body heating is a primarily neurally mediated event. The precise systems engaged to evoke neural vasodilator activity are not well understood. It has been hypothesized that cholinergic sudomotor nerve activity or a cotransmitter system is involved in the cutaneous active vasodilation. Based on these observations, we were surprised that vasodilation was attenuated in CHF, whereas SSNA responses to heat were preserved.

We cannot exclude that cutaneous vasodilator activity might be decreased, whereas the discharges of the constrictor and sudomotor nerve might be enhanced. However, cutaneous constrictor tone falls in normal subjects with heat stress, and the sweat rate was low in CHF patients in the present study. Thus, we doubt that our results could be explained by the combination of attenuated vasodilator and enhanced vasoconstrictor or sudomotor activity in CHF patients during heat stress.

The maximal peripheral vasodilator response to stimuli, such as forearm circulatory arrest (ie, reactive hypervasodilation), is impaired in CHF. Previous work suggests that maximal cutaneous vasodilation evoked by local heating is
also reduced in CHF patients. However, the impaired cutaneous vasodilator response to WBH was not attributable to a ceiling effect. Thus, we speculate that other factors, such as cutaneous vascular dysfunction, are likely to contribute to the attenuated cutaneous vasodilator response seen in CHF.

In an additional set of analyses, we compared CVC in the CHF patients and in the control subjects at the same sweat rate. To perform these analyses, the end-heat stress CVC values in CHF patients were compared with CVC at the same sweat rate in the control subjects (ie, before the end of heating). When the sweat rates were matched in this way (CHF vs Control: 0.513±0.038 vs 0.512±0.041 mg/cm² per minute; P=0.98), CVC values were dramatically lower in the CHF patients (Δ131±29% of baseline) than that in the control subjects (Δ532±101% of baseline; P=0.002). These data support the concept that for a given level cholinergic nerve activity, cutaneous vasodilator responses are attenuated in CHF.

Additionally, CVC rises during the Warm period in the control subjects, where cutaneous vasodilation was not seen in CHF patients. The WBH induced significant sweating responses in CHF patients may be in part explained by impaired nitric oxide function. On the other hand, it is well known that plasma norepinephrine levels are much higher in CHF patients in normothermic and whole-body heating conditions. The increased plasma norepinephrine concentration could limit the vasodilation. However, this effect would be in part counterbalanced by an impairment in cutaneous adrenergic receptors that is seen with heating.

β-Blockers were taken by all CHF patients on the day of study. This could have restrained the rise in heart rate and cardiac output, and have limited the increase in SkBF. It is known that β-blockers attenuate cutaneous vasodilation during exercise in healthy individuals. However, it should be noted that cutaneous vasodilation is attenuated in CHF patients even when not taking β-blockers, as shown in the previous report. Thus, β-blockers should not be the only factor for the attenuated vasodilation.

We withheld other medications on the study day. However, this approach might not have entirely removed untoward effects of these agents. For example, Holowatz et al showed that chronic low-dose aspirin therapy attenuates reflex cutaneous vasodilation in middle-aged patients.

The WBH induced significant sweating responses in CHF patients, but the sweat rate in CHF patients in WBH condition was significantly lower than that of the control subjects. Because the total SSNA activation to WBH (sudomotor + vasodilator activity) is similar to healthy controls, the attenuated sweat rate in CHF patients could be caused by altered responsiveness of sweat glands. There is no report regarding whether the sweat gland function is altered in CHF patients.

In the present study, the time for heating to increase Tcore by 0.5°C (ie, the target) in CHF patients (2571±131 s) was significantly shorter than that in control subjects (3318±177 s; P=0.002), whereas the water temperature and flow in the suit were well controlled. The body mass index of the CHF patients was greater than that of the control subjects (31±1 vs 27±1; P=0.007), which might affect the Tcore increase rate. To our knowledge, there are no reports regarding the Tcore increase rate during passive heating in obese subjects. Theoretically, compared with lean subjects, larger body mass index (ie, body mass/surface) subjects have more mass relative to skin surface. This could conceivably slow the increase in Tcore in obese subjects. Thus, the greater Tcore increase rate in CHF likely indicates an impairment in thermoregulatory responses. For example, the lower sweat rate in CHF would act to attenuate heat dissipation during heating, and this could contribute to the greater increase rate in Tcore.

Thus, during exposure to heat, CHF patients have attenuated cutaneous vasodilator and sweating responses, and a more rapid increase in body temperature. These data help explain previous clinical observations of cardiac decompensation during heat waves. Clearly, these responses need to be contrasted with the effects of chronic exposure to warm, not extreme, weather which may be associated with a reduced incidence of heart failure decompensation. The mechanisms for this beneficial effect are not clear but may include the improvement in cardiac function. It is clear that further studies are necessary to systematically examine the range of cardiovascular responses to thermoregulatory challenge seen in CHF patients.

Additionally, CVC rises during the Warm period in the control subjects, where cutaneous vasodilation was not seen in CHF patients. It is interesting that in CHF patients both SSNA and sweat rate increased during the Warm period of heating, whereas neither increased in healthy control subjects during this period. It should be noted that this is a very mild heating condition. No CHF patients or control subjects reported any discomfort during this very mild heating stage. Thus, the SSNA increase in CHF patients is likely not attributable to mental stress. The mechanism(s) for the SSNA and sweat rate increases in CHF during this stage is unclear and can only be postulated. It should be noted that a previous clinical report has suggested that an increased sweating rate might be an important symptom in CHF. Our data can support the clinical observations of excessive sweating in CHF during simple activities of daily living in patients with CHF.

Study Limitations

Multiunit SSNA recordings do not afford the opportunity to discriminate between sympathetic influences to blood vessels and sweat glands. Thus, the present experiment does not afford the opportunity to directly evaluate the various components of SSNA response in CHF. More work using local pharmacological approaches will be needed. However, the present observations clearly show that the attenuated cutaneous vasodilation seen in CHF is not caused by an attenuated total SSNA response to WBH.

We recognize that the variability between subjects and the relatively small subject number increase the likelihood of committing a type II error for the result of no significant
difference in SSNA responses between the control subjects and CHF patients. Increasing the number of subjects would increase the statistical power. However, it is quite doubtful that the observed ≈4.6% differences in SSNA between the groups in heat stress condition in this study are biologically meaningful. Previous studies showed no significant difference in SSNA between study groups when mean differences between groups were in the range of ≈9% to 40%.[13-15,47] Grassi et al[47] found SSNA differences between study groups when there was a 51% difference. Based on previous literature, we assume that a minimal 40% to 50% mean difference is needed to realize a biologically meaningful group difference in SSNA. Based on the SSNA standard deviation of 30% (CHF group) in this study, logically meaningful group difference in SSNA. Based on the minimal 40% to 50% mean difference is needed to realize a biologically meaningful group difference in SSNA. Based on the SSNA standard deviation of 30% (CHF group) in this study, we believe our interpretation of the data suggesting that SSNA responses to heat stress were not different in control subjects and CHF patients is valid.

In conclusion, our findings provide the first direct evidence that SSNA activation to a modest WBH in CHF patients is not attenuated. Thus, the attenuated cutaneous vasodilator response to heat in CHF patients is not induced by a reduction in total activity of sympathetic outflow to skin. We speculate that impaired intrinsic vasodilator pathways contribute to this response.

Acknowledgments

We are grateful to Jennifer L. Stoner for secretarial help in preparing this article.

Sources of Funding

This work was supported by the American Heart Association Grant 0553599U (Cui), 0635245 N (Cui), National Institutes of Health P01 HL096570 (Sinoway), M01 RR033184 (Sinoway), UL1 RR033184 (Sinoway).

Disclosures

None.

References

In this report, we hypothesized that sympathetic control of skin blood flow would be impaired in chronic heart failure (HF). We examined skin sympathetic nerve activity and skin blood flow responses to a modest heat stress in 9 HF patients and 9 matched control subjects. Whole-body heating induced similar increases in internal (≈0.6°C) and skin (≈4°C) temperatures in both groups. Whole-body heat stress evoked similar skin sympathetic nerve activity response in the 2 groups (P=0.66), whereas the elevation in forearm cutaneous vascular conductance in patients with HF was significantly lower than that in healthy control subjects (P=0.001). The clinical implications of these findings are 2-fold. First, these findings provide a physiological explanation for the clinical observation that HF patients are particularly vulnerable to injury from heat stress. Second, the attenuated skin vasodilator response in HF patients is not attributable to a reduction in sympathetic outflow to skin. Thus in HF patients, efforts aimed at directly modulating skin vascular function may be more important than the efforts to modulate central sympathetic control of the skin.

CLINICAL PERSPECTIVE
Chronic Heart Failure Does Not Attenuate the Total Activity of Sympathetic Outflow to Skin During Whole-Body Heating
Jian Cui, John P. Boehmer, Cheryl Blaha, Robert Lucking, Allen R. Kunselman and Lawrence I. Sinoway

Circ Heart Fail. 2013;6:271-278; originally published online February 8, 2013;
doi: 10.1161/CIRCHEARTFAILURE.112.000135
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/6/2/271

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Heart Failure_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Heart Failure_ is online at:
http://circheartfailure.ahajournals.org//subscriptions/