Effects of Exercise on Left Ventricular Systolic and Diastolic Properties in Patients With Heart Failure and a Preserved Ejection Fraction Versus Heart Failure and a Reduced Ejection Fraction

Michael R. Zile, MD; Barbro Kjellstrom, BMA, PhD; Tom Bennett, PhD; Yong Cho, PhD; Catalin F. Baicu, PhD; Mark F. Aaron, MD; William T. Abraham, MD; Robert C. Bourge, MD; Fred J. Kueffer, MS

Background—The purpose of the current study was to define exercise-induced changes in indices of left ventricular (LV) systolic and diastolic properties in patients with chronic heart failure (HF), compare these changes in patients with HF and a reduced ejection fraction (EF) versus HF and a preserved EF, and compare the hemodynamic responses to activities of daily living with symptom-limited upright exercise.

Methods and Results—Subjects with HF and a preserved EF (n=8) and subjects with HF and a reduced EF (n=5) underwent symptom-limited Naughton protocol treadmill exercise tests. Implantable hemodynamic monitor data and echocardiographic data were obtained before exercise and at peak exercise. Implantable hemodynamic monitor data were obtained during activities of daily living during a 24-hour time period. In patients with HF and a reduced EF, limited exercise time (639±164 seconds) was associated with a marked rise in right ventricular systolic, diastolic, and estimated pulmonary artery diastolic (ePAD) pressures and an increase in LV end diastolic volume (EDV). LV systolic properties, namely EF, end systolic elastance, stroke work, and preload recruitable stroke work, all decreased. The ePAD/EDV ratio increased; to a large extent, this was dependent on an increase in EDV. By contrast, in HF and a preserved EF, limited exercise time (411±128 seconds) and the marked rise in right ventricular systolic, diastolic, and ePAD pressures were associated with no change in LV EDV. LV systolic properties increased or were unchanged; ePAD/EDV ratio increased during exercise, but the increase was independent of a change in EDV. The ranges of right ventricular systolic, diastolic, and ePAD pressures during activities of daily living were higher than the ranges of these values during the exercise stress test.

Conclusions—Although exercise limitations were similar between HF and a reduced EF and HF and a preserved EF; there were significant differences in exercise-induced changes in LV systolic and diastolic properties. These differences likely reflect the different pathophysiologies of these clinical syndromes of HF. (Circ Heart Fail. 2013;6:508-516.)

Key Words: diastolic function ■ exercise ■ heart failure ■ systolic function

Exercise intolerance is a cardinal symptom of patients with chronic heart failure. Symptoms of exertional fatigue and dyspnea are universally present and present to a comparable extent in patients with HF and a reduced ejection fraction (HFrEF) and patients with HF and a preserved EF (HFpEF). These symptoms are attributed to an inability to fill the left ventricle at typically low pressures during exercise and the inability to increase cardiac output sufficiently to meet the metabolic demands of exercise. Healthy middle-aged subjects can augment diastolic filling while maintaining normal diastolic pressure during exercise and increase cardiac output ≈4-fold through a combination of increased heart rate and stroke volume (SV). Previous studies using symptom-limited exercise testing have suggested that an abnormal response to exercise in patients with chronic heart failure may be associated with changes in left ventricular (LV) systolic properties, diastolic properties and chronotropic incompetence. However, whether these functional changes are comparable in patients with HFrEF versus HFpEF has not been completely defined. In addition, recent studies have suggested that even activities of daily living in patients with chronic heart failure can result in large changes in hemodynamic profile. However, whether the hemodynamic response to daily activity is comparable with the hemodynamic...
response to symptom-limited exercise in patients with HFrEF versus HfP EF has not been clearly defined. Defining these exercise-induced changes in systolic properties and diastolic properties in different forms of HF may have both diagnostic and therapeutic clinical implications. The purpose of the current study was to define the exercise-induced changes in LV systolic and diastolic properties in patients with chronic heart failure, compare these changes in patients with HFrEF versus HfP EF, and compare the hemodynamic responses to activities of daily living with symptom-limited upright exercise.

Clinical Perspective on p 516

Methods

Patients

The current study was a substudy of the COMPASS-HF trial (Chronicle Offers Management to Patients with Advanced Signs and Symptoms of Heart Failure). After completion of the 6-month randomization period and when the patients were clinically stable, they were enrolled in the exercise substudy. Eight COMPASS-HF subjects who had documented HfP EF (EF ≥ 50%) and 5 subjects with HFrEF (EF < 50%) were enrolled. The inclusion and exclusion criteria for the COMPASS-HF study have been described previously. Briefly, patients were eligible for the study if they were ≥18 years old, had New York Heart Association (NYHA) class III or IV HF, were managed in a HF program with optimized medical therapy for at least 3 months before enrollment, and had at least 1 HF-related hospitalization or emergency department visit necessitating intravenous treatment within the previous 6 months. Patients were excluded from the study if they had severe chronic obstructive or restrictive pulmonary disease, primary pulmonary hypertension; a major cardiovascular event within 6 months of enrollment, were receiving continuous positive inotropic therapy, were presently implanted with an incompatible pacemaker or implantable cardioverter-defibrillator, were receiving cardiac resynchronization therapy that had not achieved optimal programming for 3 months; or were of childbearing age and were not using reliable contraceptive measures.

For the exercise substudy, the following criteria were added: the subject must have been able to perform a Naughton exercise protocol, must not have had unstable angina within past 8 weeks, recent myocardial infarction or bypass, or valvular surgery (within 8 weeks) or symptomatic aortic stenosis. The Naughton protocol was chosen to ensure that an adequate stress was imposed, and that a sufficient time of the treadmill would be possible in a group of subjects with severe HF.

The investigational review board of each participating institution approved the study and substudy protocols, and all patients provided written informed consent for both study and substudy.

Study Design and Measurements

Patients enrolled in the exercise substudy underwent a symptom-limited, upright, graded exercise test using a Naughton protocol on a treadmill. Implantable hemodynamic monitor (IHM)-derived pressure data, heart rate data, blood pressure (BP) data, and echocardiographic data were obtained at baseline before exercise and at peak exercise. In addition, IHM data were obtained during activities of daily living during 24-hour time periods from 7 days before the day of exercise study.

The IHM measurements made in this study included 2 sets of data: (1) Those associated with activities of daily living (ambulatory); and (2) Those associated with the treadmill test (exercise). For ambulatory activities of daily living, the median, minimum, and maximum values during each 24-hour period from 7 days before the day of exercise testing were obtained. For the treadmill exercise, values were obtained just before, during, and after the exercise treadmill test.

The IHM used in this study measured right ventricular (RV) systolic pressure, RV diastolic pressure, RV pulse pressure, an estimate of pulmonary artery diastolic pressure (ePAD), maximum positive and negative change in pressure over time (+ and − dP/dt), heart rate, and activity. The system components, implantation procedure, monitoring methods, and pressure analysis methods have been previously described. Although the specific IHM device used in the current study is no longer under development, there are currently at least 2 IHM technologies under development and study. These include pulmonary artery and left atrial pressure monitors. None of these technologies are currently approved for clinical use in the United States, but each is being examined in randomized clinical trials. Before beginning the exercise test, the IHM device was programmed to a high-resolution data mode, which allowed the device to capture hemodynamic data every 2 seconds. At the end of the study, the IHM device was programmed to restore the original setting for continued HF management.

A baseline echocardiogram, performed in a supine position, captured the short and long parasternal views, apical 2, 4, and 5 chamber views; however, Doppler and Tissue Doppler studies were not performed as part of this exercise protocol. After the initial echocardiogram, the patient performed a Naughton protocol on an exercise treadmill. At peak exercise, the subject dismounted the exercise treadmill, returned to the supine position, and a second echocardiogram was immediately performed. Echocardiographic views were captured in the following order: 4 chamber, parasternal long, parasternal short, apical 2 and 5 chamber views. At the end of the second echocardiogram, the IHM data were uploaded and saved to a disk. BP was measured with the BP cuff at baseline, during each exercise stage, at peak exercise, and during the recovery period.

Echocardiographically determined LV dimensions and wall thickness were measured according to the recommendations of the American Society of Echocardiography. Calculations of LV volume and mass were made using standard published methods. Analysis of the echocardiographic data were performed in a core laboratory at the Medical University of South Carolina. All images were coded and interpreted by a single research sonographer who was blinded to patient identity and the order of study. No normal referent control subjects were included in this study because there would not have been an indication for placement of an IHM and they would not have been candidates for the COMPASS-HF study. Therefore, hemodynamic, structural, and functional data examined in patients with HFrEF and HfP EF in the current study were qualitatively compared with the normal ranges for these parameters that were published recently as part of the I-Preserve echo-substudy.

The systolic properties of the left ventricle were assessed and evaluated by examining indices that reflect LV performance, function, and contractility. LV systolic performance was assessed by calculating SV (end diastolic volume [EDV] − end systolic volume [ESV]) and stroke work (SW; LV pressure−volume area). The pressure−volume area was calculated using data from 4 time points: mitral valve (MV) opening, MV closure, aortic valve (AV) opening, AV closure, using methods similar to previous studies. The pressures and volumes at each of these time points were calculated as follows: at MV opening, LV volume = ESV, LV pressure = ePAD/2, at MV closure, LV volume = EDV, LV pressure = ePAD, at AV opening, LV volume = EDV, LV pressure = mean BP, and at AV closure, LV volume = ESV and LV pressure = mean BP. Using the latter method (rather than SV=mean BP) allows consideration of changes in diastolic compliance to be taken into account. The rationale for estimating LV pressure at end systole as ePAD/2 is based on previous studies in both HFrEF and HfP EF demonstrating that early diastolic pressure at MV opening is approximately half the value at end diastole. LV systolic function was assessed as LV EF and preload recruitable SW (single beat method). LV contractility was assessed as end systolic elastance (Ees), which was defined as the slope of the end systolic pressure−volume relationship calculated using a single beat method. Effective arterial elastance (Ea) was assessed as the ratio of end systolic pressure versus SV.
and was used in the calculation of an arterial-ventricular coupling index: \(\text{Ea/Ees} \). The diastolic properties of the left ventricle were assessed by measuring ePAD, end diastolic stress, and the ratio of ePAD to EDV; the ePAD/EDV ratio was used to reflect operative end diastolic distensibility.

Statistical Analysis

Because of the small sample size in this study, 5 patients with HFrEF and 8 patients with HFpEF, interpretation of the concepts presented were driven primarily by the descriptive statistics. Statistical tests were also conducted to aid in the interpretation of the data. Because of the small sample size, nonparametric statistical tests were chosen.

Statistical comparison of demographic, hemodynamic, structural, and functional data at baseline between patients with HFrEF and patients with HFpEF was made using a Wilcoxon rank-sum test. Similarly, changes in IVM pressures, BP, and echocardiographic data before to after exercise or during activities of daily living between HFrEF and HFpEF groups were made using a Wilcoxon rank-sum test. Changes in IVM pressures, BP and echocardiographic data within a group before and after exercise or during activities of daily living were compared using a Wilcoxon signed-rank test. \(P \) values presented are 2-sided and nominal. \(P \) values \(\leq 0.05 \) or \(<0.1 \) are provided in Tables 1 and 2. These 2 partition values indicating level of statistical significance were chosen because of the small sample sizes and the limits of the nonparametric to detect \(P \) values <0.05 under these circumstances. Data presented in the tables are mean±SD and median, minimum, maximum. Data presented in the figures are mean±SE. Spearman correlation coefficient was used to calculate correlation. Statistical analyses were also performed using parametric tests consisting of 2-sample \(t \) tests and Pearson correlation; these are presented in the online-only Data Supplement. Data management and statistical analyses were conducted by the sponsor of the study, Medtronic, Inc. An independent core laboratory at The Medical University of South Carolina blinded to the patient and timing of the echo was used for echo analysis. The authors had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the article as written.

Results

Demographics

The patients with HFrEF were 55±17 years old, 4 male and 1 female, and had a BSA of 2.2±0.3 m². All patients were being treated with a \(\beta \)-blocker, angiotension-converting enzyme inhibitor or angiotension receptor antagonist, and a diuretic. Three patients had a history of hypertension, 3 had diabetes mellitus, 3 had coronary artery disease, and all were NYHA class III.

The patients with HFpEF were 61±7 years old, 3 male and 5 female, and had a BSA of 2.4±0.2 m². All patients were being treated with a \(\beta \)-blocker, angiotension-converting enzyme inhibitor or angiotension receptor antagonist, and a diuretic. All patients had a history of hypertension, 4 had diabetes mellitus, 3 had coronary artery disease, and all were NYHA class III.

Table 1. Hemodynamic Responses to Exercise in Patients With HFrEF vs HFpEF

<table>
<thead>
<tr>
<th></th>
<th>HFrEF</th>
<th>HFpEF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Exercise</td>
<td>Baseline Exercise</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>74±9 (71, 59–84)</td>
<td>108±24* (111, 100–120)</td>
</tr>
<tr>
<td></td>
<td>74±9 (71, 59–84)</td>
<td>125±16† (124, 107–150)</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>94±8 (90, 86–104)</td>
<td>110±9* (110, 100–124)</td>
</tr>
<tr>
<td></td>
<td>115±13§ (118, 90–130)</td>
<td></td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>64±5 (64, 58–70)</td>
<td>60±2 (60, 56–62)</td>
</tr>
<tr>
<td></td>
<td>67±9 (65, 53–84)</td>
<td></td>
</tr>
<tr>
<td>RV SP, mm Hg</td>
<td>38±12 (35, 23–70)</td>
<td>20±14* (16, 11–45)</td>
</tr>
<tr>
<td></td>
<td>14±9 (12, 2–26)</td>
<td></td>
</tr>
<tr>
<td>RV PP, mm Hg</td>
<td>28±12 (24, 18–49)</td>
<td>42±17* (40, 36–54)</td>
</tr>
<tr>
<td></td>
<td>22±3 (23, 18–26)</td>
<td></td>
</tr>
<tr>
<td>(+) RV dP/dt, mm Hg/s</td>
<td>327±11 (327, 314–340)</td>
<td>998±339 (964, 643–1429)</td>
</tr>
<tr>
<td></td>
<td>335±74 (300, 261–471)</td>
<td></td>
</tr>
<tr>
<td>(-) RV dP/dt, mm Hg/s</td>
<td>340±81 (355, 236–415)</td>
<td>650±155 (710, 423–754)</td>
</tr>
<tr>
<td></td>
<td>274±78 (271, 163–420)</td>
<td></td>
</tr>
<tr>
<td>LV EDV, mL/m²</td>
<td>111±42 (96, 61–164)</td>
<td>121±39* (109, 72–171)</td>
</tr>
<tr>
<td></td>
<td>55±14§ (57, 37–83)</td>
<td></td>
</tr>
<tr>
<td>LV ESV, mL/m²</td>
<td>73±37 (63, 32–131)</td>
<td>86±41* (75, 44–154)</td>
</tr>
<tr>
<td></td>
<td>24±7§ (23, 14–38)</td>
<td></td>
</tr>
<tr>
<td>Exercise time, s</td>
<td>639±164 (686, 450–859)</td>
<td>411±128§ (392, 270–581)</td>
</tr>
</tbody>
</table>

Data=Mean±SD (median, min, max). BP indicates blood pressure; DP, diastolic pressure; dP/dt, rate of change of pressure vs time; EDV, end diastolic volume; ESV, end systolic volume; HFrEF, heart failure with a reduced ejection fraction (EF); HFpEF, heart failure with a preserved EF; LV, left ventricular; PP, pulse pressure; RV, right ventricular; and SP, systolic pressure.

*\(P<0.10 \); †\(P<0.05 \) vs corresponding baseline; ‡\(P<0.10 \); §\(P<0.05 \) vs corresponding HFrEF.
Baseline Structure and Hemodynamics

Patients with HFrEF were characterized by eccentric remodeling with an increased EDV of 236±58 mL and LV mass of 314±75 g, and decreased relative wall thickness of 0.29±0.09 compared with published referent control values.19,22 RV systolic, diastolic, and ePAD pressures were increased at baseline (Table 1).

Patients with HFpEF were characterized by concentric remodeling with a normal EDV of 130±33 mL, increased LV mass of 237±40 g, and increased relative wall thickness of 0.45±0.06. RV systolic, diastolic, and ePAD pressures were increased at baseline. Compared with HFrEF, patients with HFpEF had a smaller volume and mass, a larger mass/volume ratio but similar abnormalities in RV systolic, diastolic, and ePAD pressures. Heart rate was normal in both patients with HFrEF and HFpEF. Systolic and diastolic arterial pressures were lower in HFrEF compared with HFpEF.

Response to Exercise in Patients With HFrEF

On average, patients with HFrEF exercised on the treadmill for 639±164 seconds (Table 1). This limited exercise time was associated with a small rise in heart rate and BP but a marked rise in RV systolic, diastolic, pulse, and ePAD pressures. EDV, ESV, and cardiac output (CO) increased during exercise compared with baseline. LV systolic properties decreased during exercise compared with baseline; EF, Ees, SW, preload recruitable SW all decreased (Table 2). The ePAD/EDV ratio increased during exercise compared with baseline; to a large extent, the increase in ePAD/EDV was dependent on an increase in EDV (Table 2 and Figures 1 and 2). There was an inverse relationship between the increase in EDV and the baseline ePAD; the larger the baseline ePAD, the smaller the change in EDV ($r=-0.72$).

The ranges of ambulatory and exercise RV systolic pressure, ePAD, RV diastolic pressure, and RV pulse pressure for patients with HFrEF are illustrated in Figure 3. The shaded bars show the range of ambulatory pressures averaged over 7 days before the day of the exercise testing. The solid bars show the range of pressures from rest to peak exercise during symptom-limited treadmill exercise. For all variables, the range in pressures was larger during ambulatory activities of daily living than during symptom-limited treadmill exercise. With the exception of maximum values of RV pulse pressure, the maximum values during symptom-limited exercise were

Table 2. Effects of Exercise on LV Systolic and Diastolic Functions

<table>
<thead>
<tr>
<th></th>
<th>HFrEF Baseline</th>
<th>HFrEF Exercise</th>
<th>HFpEF Baseline</th>
<th>HFpEF Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ePAD, mm Hg</td>
<td>22±7</td>
<td>46±12†</td>
<td>22±7</td>
<td>46±12†</td>
</tr>
<tr>
<td>ePAD/EDV, mm Hg/mL</td>
<td>0.17±0.03*</td>
<td>0.36±0.05†§</td>
<td>0.17±0.03*</td>
<td>0.36±0.05†§</td>
</tr>
<tr>
<td>End diastolic stress, g/cm²</td>
<td>22±22</td>
<td>128±57*</td>
<td>29±12§</td>
<td>58±19§</td>
</tr>
<tr>
<td>Systolic properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>56±5§</td>
<td>62±41§</td>
<td>56±5§</td>
<td>62±41§</td>
</tr>
<tr>
<td>Cardiac output, L/min</td>
<td>6.0±2.3</td>
<td>8.6±4.1</td>
<td>6.0±2.3</td>
<td>8.6±4.1</td>
</tr>
<tr>
<td>Ea, mm Hg/mL</td>
<td>0.94±0.20</td>
<td>1.21±0.72</td>
<td>0.94±0.20</td>
<td>1.21±0.72</td>
</tr>
<tr>
<td>Ees, mm Hg/mL</td>
<td>0.55±0.22</td>
<td>0.46±0.15</td>
<td>0.55±0.22</td>
<td>0.46±0.15</td>
</tr>
<tr>
<td>Ea/Ees</td>
<td>1.99±1.15</td>
<td>3.25±3.23*</td>
<td>1.99±1.15</td>
<td>3.25±3.23*</td>
</tr>
<tr>
<td>Stroke work, Kgf·cm</td>
<td>5.81±2.46</td>
<td>3.43±1.58*</td>
<td>5.81±2.46</td>
<td>3.43±1.58*</td>
</tr>
<tr>
<td>PRSW, g/cm²</td>
<td>46.9±17.0</td>
<td>26.9±11.6*</td>
<td>46.9±17.0</td>
<td>26.9±11.6*</td>
</tr>
<tr>
<td>End systolic stress, g/cm²</td>
<td>113±37±39</td>
<td>154±55*</td>
<td>45±7§</td>
<td>44±6§</td>
</tr>
</tbody>
</table>

Data=Mean±SD (median, minimum-maximum). Ea indicates effective arterial elastance; EDV, left ventricular (LV) end diastolic volume; Ees, end systolic elastance; ePAD, estimated pulmonary artery diastolic pressure; HFpEF, heart failure with a preserved EF; HFrEF, heart failure with a reduced ejection fraction (EF); and PRSW, preload recruitable stroke work.

*P<0.10; †P<0.05 vs Baseline; ‡P<0.10; §P<0.05 vs corresponding HFrEF.
lower and the minimum pressures during symptom-limited exercise were higher than the corresponding maximum and minimum pressures seen during ambulatory activities.

Both during exercise and ambulatory measurements, the heart rate ranged from minimum values of 60±10 to maximum values of 122±19 beats per minute (in both the patients with HFrEF and HFpEF). These data suggest that the degree of exertion during activities of daily living was of a comparable scale with the degree of exertion during symptom-limited exercise testing, and that this extent of exertion was limited by comparable symptoms.

Response to Exercise in Patients With HFpEF

On average patients with HFpEF exercised on the treadmill for 411±128 seconds (Table 1). This limited exercise time was associated with a rise in heart rate and BP and a marked rise in RV systolic, diastolic, pulse, and ePAD pressures. These changes in RV pressures were similar in HFpEF versus HFrEF. EDV did not change in patients with HFpEF, ESV decreased and CO increased during exercise compared with baseline. LV systolic properties increased or were unchanged during exercise compared with baseline; EF, Ees, SW increased, preload recruitable SW was unchanged (Table 2). Ees and Ea were also calculated using peak aortic pressure (instead of mean aortic pressure). Both increased with exercise. The ePAD/EDV ratio increased during exercise compared with baseline; the increase in ePAD was independent of a change in EDV. The baseline value and the exercise value of the ePAD/EDV ratio were higher in HFpEF versus HFrEF (Table 2 and Figures 1 and 2).

The ranges of RV systolic pressure, ePAD, RV diastolic pressure, and RV pulse pressure for patients with HFpEF are illustrated in Figure 3. The ranges were comparable between patients with HFpEF and HFrEF. For all variables in patients with HFpEF, the range was larger during ambulatory activities of daily living than during symptom-limited treadmill exercise. It is of particular note that the maximum values during symptom-limited exercise were lower and the minimum pressures during symptom-limited exercise were higher than the corresponding maximum and minimum pressures seen during ambulatory activities. In both patients with HFpEF and HFrEF, peak RV pulse pressure during symptom-limited exercise tended to reach a comparable level with the peak values seen in ambulatory activities.

Discussion

Data from the current study support the following conclusions. First, there was a similar impairment in the ability to increase cardiac output and maintain low-LV diastolic pressure sufficiently during exercise in patients with HFrEF and HFpEF. Second, in both patients with HFrEF and HFpEF, the hemodynamic response to ambulatory activities of daily living had larger ranges, larger maximum values, and smaller minimum values than those that occurred during the symptom-limited upright exercise. Third, in patients with HFrEF, exercise was associated with a significant decrease in LV systolic properties and a volume-dependent increase in LV diastolic pressure. The exercise-induced increase in SV, albeit limited, seemed to result from the ability to recruit the Frank–Starling mechanism (increased EDV) despite the fall in contractility (increased ESV). The inability to maintain or decrease ESV during exercise occurred although there was an increase in heart rate of 46% and at least the potential for an enhanced force–frequency response. Fourth, in contrast to HFrEF, in patients with HFpEF, exercise was associated with small increases in LV systolic properties and a volume-independent increase in LV diastolic pressure. The exercise-induced increase in SV, albeit limited, seemed to result from increased contractility (decreased ESV) or a preserved force–frequency response (heart rate increased 69%) without an ability to recruit the Frank–Starling mechanism (unchanged EDV). Therefore, although exercise limitations were present in both HFrEF and HFpEF, there were significant differences in exercise-induced changes in LV systolic and diastolic properties. These differences likely reflect the different pathophysiology of these clinical syndromes of HF.

Normal Response to Exercise

In the age group examined in the current study, a normal response to exercise is characterized by an increase in LV systolic properties and an augmentation in LV diastolic relaxation and filling. Under normal circumstances, exercise results in a 10% increase in LV EDV, a 10% decrease in LV ESV, a 15% to 20% increase in SV, and a 3.5- to 4-fold increase in CO with no significant change in LV mean diastolic or end diastolic pressure. The decrease in LV ESV results from an exercise-induced increase in contractility (as evidenced by an increase in Ees) driven at least, in part, by an increase in sympathetic activation and the force versus frequency relationship. The increase in LV EDV with no significant change in mean or end diastolic pressures results from an increase in the rate of LV
diastolic pressure decline, an increase in early diastolic suction and recoil and an increase in diastolic filling. Additional mechanisms that allow this dynamic rightward shift in the diastolic pressure–volume relationship during exercise may also include exercise-induced increases in adrenergic tone and enhanced myocardial nitric oxide bioavailability. Increased LV EDV allows recruitment of Frank–Starling forces to increase SV. Thus, in normal subjects, augmentation of both systolic and diastolic properties combine to increase SV without a significant increase in diastolic pressure. Compared with this normal response to exercise, both the patients with HFrEF and HFrEF examined in the current study had an abnormal response to exercise.

Previous Studies of Diastolic Properties in Patients With HFpEF
In their seminal study in 1991, Kitzman et al13 were the first to examine a group of patients with HFpEF and compare their response with normal control subjects. In these patients, many of whom had hypertrophic cardiomyopathy or amyloidosis, exercise was characterized by a blunted increase in cardiac index, an inability to recruit Frank–Starling mechanism (no change in EDV or SV), and a volume-independent increase in pulmonary capillary wedge pressure, all of which are concordant with the results in the present study of patients with HFpEF. In a more recent study by some of the same investigators, exercise in patients with HFpEF resulted in a 10% increase in LV EDV.5 The reason for the differences between these 2 studies is not clear but may be related to the patient populations examined. In addition, the more recent study did not measure LV pressures and may not have had the same severity of disease. All other studies, by a variety of investigators, are concordant with the current study and demonstrate that exercise in patients with HFpEF is associated with little or no change in EDV and an inability to recruit Frank–Starling mechanisms.10,11,23–25 Other studies
have examined changes in the diastolic pressure–volume relationship during exercise in patients with HFP EF and compared them with referent controls. One found no differences in patients with HFP EF compared with control, whereas the other showed changes similar to those found in the current study. These differences in outcomes may be dependent on the differences between upright and supine exercise, other methodological issues, or differences in baseline hemodynamic conditions. For example, the extent of baseline diastolic dysfunction may affect the ability to recruit Starling forces (in both HFP EF and HFr EF) where higher baseline LV diastolic pressures, higher operative stiffness, and the presence of a very restrictive filling pattern may limit filling and an exercise-induced increase in LV EDV. Neither of the previous studies discussed above compared the exercise response in HFP EF with patients with HFr EF or ambulatory exercise hemodynamic responses.

Previous Studies of Systolic Properties in Patients With HFP EF

Borlaug et al were among the first to compare changes in systolic properties during exercise in a group of patients with HFP EF using a largely black female population that they compared with normal controls. They found that patients with HFP EF had a reduced chronotropic, vasodilator, and cardiac output reserve response to exercise. Compared with the normal controls, patients with HFP EF had a blunted increase in Ees but a similar increase in power index compared with normal controls. Additional studies examined exercise responses in LV systolic properties in patients with HFP EF and compared these responses with referent controls. In some of these studies, blunted exercise responses in LV systolic properties were seen in patients with HFP EF compared with controls; however, in others, there were no differences in the exercise response in LV systolic properties between patients with HFP EF and controls. Whether the differences between these studies were caused by differences in patient selection or some other methodological difference is unclear.

Previous Studies Comparing Ambulatory With Exercise Hemodynamics in Patients With HFr EF

Studies of Braunschweig et al used IHM data obtained from patients with HFr EF and compared RV systolic, diastole, and ePAD pressure responses during 6-minute walk tests with responses seen during ambulatory activities of daily living. Ohlsson et al examined differences between 6-minute walk, submaximal, and maximal exercise using IHM technology in patients with HFr EF. These studies demonstrate that the ambulatory ranges of hemodynamic values were larger (with higher maximum and lower minimum values) than seen with 6-minute walk hall, submaximal or maximal exercise tests. These data suggest that daily ambulatory ranges of pressures in patients with HFr EF are large, and that exercise tests encompass only a portion of the physiological range of the hemodynamic load experienced during daily living activities in patients with HF. Data from the current study are concordant with these previous studies and demonstrate for the first time that these same conclusions apply to patients with HFP EF. It is possible that activities of daily living include modest, but sustained, activity that involve combinations of higher sympathetic tone, mixed changes in body position or posture, and mixed isometric and dynamic exercise that in aggregate induce a large (or larger) hemodynamic response compared with controlled treadmill exercise.

Limitations

A number of studies have specifically examined patients with HFP EF or HFr EF and compared them with normal control subjects. The current study did not examine referent control subjects in part because participation in the COMPASS-HF study required implantation of an IHM. Implantation of such a device in referent control subjects would not have been ethical. Therefore, results from the current study must be interpreted based on published data for comparison with control subjects. The number of subjects studied was also limited by the number of available patients after the end of the COMPASS-HF study who had IHM devices that were functional and patients that qualified for an exercise study. Nonetheless, whereas the number of subjects studied were limited, each was studied in a thorough fashion using technology not widely available.

The use of stress echocardiography to quantitate LV structure and function imposes certain limitations. Images must be obtained immediately after peak exercise; there is a time-limited opportunity to obtain images. However, these are now standardized and reproducible. The effects of exercise on echo parameters of diastolic function were not measured. Given a limited amount of imaging time available to assess postexercise function, we chose to focus on views of the left ventricle rather than Doppler or Tissue Doppler.

The pressure–volume loop data were composed of 4 time points, and a number of reasonable assumptions were used to quantitate pressure and volume at each point. Most of these assumptions have been validated in previous studies. For example, although ePAD is not completely equivalent to LV end diastolic pressure, it is reasonably equivalent to mean pulmonary capillary wedge pressure in the absence of intrinsic pulmonary vascular disease (which was an exclusion criteria for this study). Thus, LV diastolic pressures were reasonably represented by ePAD. These assumptions provided an important conceptual framework for the analyses presented.

The changes in heart rate both during exercise and during activities of daily living (ambulatory) were limited by treatment with β-blockade. However, the range of heart rates from minimum to maximum were similar in patients with HFr EF and HFP EF both during exercise and ambulatory activities.

Epidemiological studies have demonstrated that patients with HFP EF are older and more often women. This was true in the patients enrolled in this study. However, given the limited sample sizes there were no statistical differences between groups with respect to age and sex. Nonetheless, the effects of age and sex on reported results must be considered. We are not
aware of a sex effect on the parameters measured; increased age may amplify the underlying abnormalities seen in HFrEF and magnify its effects on exercise parameters. Additional studies will be required to address the sex and age issues.

It was not the purpose of the current study to define the mechanisms causing the exercise limitation present in these patients with HF. Therefore, no attempt to do so was made. The specific focus was on the differences in exercise-induced changes in LV systolic and diastolic functions.

Conclusions

Data from the current study examining patients with HFrEF are largely concordant with the previous studies discussed above. However, the current study adds new and important data. In the current study, both systolic and diastolic properties are examined, patients with HFrEF are compared with patients with HfPEF, and the hemodynamic response to activities of daily living were compared with symptom-limited exercise stress tests in the same patients. These additional data provided new and unique insights into our understanding of exercise-induced changes in systolic and diastolic properties. For example, although the increase in cardiac output was blunted in both patients with HFrEF and HfPEF, the mechanisms underlying this limitation were significantly different. In patients with HFrEF, systolic properties fell during exercise, but the recruitment of Frank–Starling mechanisms allowed some increase in SV. By contrast, in patients with HfPEF, there was no recruitment of Frank–Starling mechanisms, but a small increase in LV systolic properties allowed an increase in SV. LV diastolic pressures rose in both patients with HFrEF and HfPEF; however, there was a volume-dependent change in patients with HFrEF but a volume-independent change in patients with HfPEF. These data support the conclusion of an editorial by Paulus in which he suggested that although a number of mechanisms limit exercise in patients with HFrEF “chief among the gang (of potential mechanisms) are the abnormalities in diastolic function”. By contrast, although a number of mechanisms limit exercise in patients with HfPEF, 1 dominant mechanism is the abnormalities in systolic function. These data may serve to underscore the differences in pathophysiology of the clinical syndrome of HFrEF versus HfPEF.

Sources of Funding

This study was funded by Medtronic, Inc (Dr Zile) and the research service of the Department of Veterans Affairs (Dr Zile).

Disclosures

Drs Zile, Aaron, Abraham, and Bourge received research grants from and served as consultants to Medtronic, Inc. Dr Baicu has no disclosures. Dr Kjellstrom was a Medtronic employee at the time this research was conducted but since 2009 is working at the Karolinska Institute, Stockholm, Sweden, with no conflict of interest. Drs Cho and Bennett and Mr Kueffer are Medtronic employees.

References

18. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellicka PA, Picard MH, Roman MJ, Seward JH, Shabotty JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463.
The purpose of the current study was to define exercise-induced changes in indices of left ventricular systolic and diastolic properties in patients with chronic heart failure (HF), and in particular to compare these changes in patients with HF and a reduced ejection fraction (HFrEF) versus HF and a preserved EF (HFpEF). These results provided new and unique insights into our understanding of exercise-induced changes in systolic and diastolic properties. For example, although the increase in cardiac output was blunted in both patients with HFrEF and HFpEF, the mechanisms underlying this limitation were significantly different. In HFrEF, systolic properties fell during exercise, but the recruitment of Frank–Starling mechanisms allowed some increase in stroke volume. By contrast, in patients with HFpEF, there was no recruitment of Frank–Starling mechanisms, but a small increase in left ventricular systolic properties allowed an increase in stroke volume. Left ventricular diastolic pressures rose in both patients with HFrEF and HFpEF; however, this was a volume-dependent change in patients with HFrEF, but a volume-independent change in patients with HFpEF. These data support the conclusion that although a number of mechanisms limit exercise in HFpEF, 1 dominant mechanism is the abnormalities in diastolic function. By contrast, although a number of mechanisms limit exercise in HFrEF, 1 dominant mechanism is the abnormalities in systolic function. These data may serve to underscore the differences in pathophysiology of the clinical syndrome of HFrEF versus HFpEF.
Effects of Exercise on Left Ventricular Systolic and Diastolic Properties in Patients With Heart Failure and a Preserved Ejection Fraction Versus Heart Failure and a Reduced Ejection Fraction

Michael R. Zile, Barbro Kjellstrom, Tom Bennett, Yong Cho, Catalin F. Baicu, Mark F. Aaron, William T. Abraham, Robert C. Bourge and Fred J. Kueffer

Circ Heart Fail. 2013;6:508-516; originally published online March 20, 2013;
doi: 10.1161/CIRCHEARTFAILURE.112.000216

Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/6/3/508

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2013/03/20/CIRCHEARTFAILURE.112.000216.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/
Supplemental Table 1. Hemodynamic Response to Exercise in Patients with HFrEF vs. HFpEF

<table>
<thead>
<tr>
<th></th>
<th>HFrEF</th>
<th>Exercise</th>
<th>HFpEF</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>74±9</td>
<td>108±24 *</td>
<td>74±14</td>
<td>125±16 *#</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>94±8</td>
<td>110±9 *</td>
<td>115±13 #</td>
<td>154±9 *#</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>64±5</td>
<td>60±2</td>
<td>67±9</td>
<td>79±13 *#</td>
</tr>
<tr>
<td>RV SP (mmHg)</td>
<td>38±19</td>
<td>63±11 *</td>
<td>36±10</td>
<td>61±15 *</td>
</tr>
<tr>
<td>RV DP (mmHg)</td>
<td>10±8</td>
<td>20±14 *</td>
<td>14±9</td>
<td>22±16 *</td>
</tr>
<tr>
<td>RV PP (mmHg)</td>
<td>28±12</td>
<td>42±17 *</td>
<td>22±3</td>
<td>40±6 *</td>
</tr>
<tr>
<td>(+) RV dP/dt (mmHg/s)</td>
<td>327±11</td>
<td>998±339 *</td>
<td>335±74</td>
<td>943±436 *</td>
</tr>
<tr>
<td>(-) RV dP/dt (mmHg/s)</td>
<td>340±81</td>
<td>650±155 *</td>
<td>274±78</td>
<td>525±104 *</td>
</tr>
<tr>
<td>LV EDV (mL/m2)</td>
<td>111±42</td>
<td>121±39 *</td>
<td>55±14</td>
<td>55±13 #</td>
</tr>
<tr>
<td>LV ESV (mL/m2)</td>
<td>73±37</td>
<td>86±41 *</td>
<td>24±7</td>
<td>21±6 #</td>
</tr>
<tr>
<td>Exercise Time (s)</td>
<td>639±164</td>
<td></td>
<td>411±128</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: HFrEF = heart failure with a reduced ejection fraction (EF), HFpEF = heart failure with a preserved EF, LV = left ventricular, RV = right ventricular, EDV = end diastolic volume, ESV = end systolic volume, BP = blood pressure, dP/dt = rate of change of pressure versus time, SP=systolic pressure, DP=diastolic pressure, PP=pulse pressure, Data=Mean ± SD, * = p < 0.05 versus corresponding baseline, # = p < 0.05 versus corresponding HFrEF.
Supplemental Table 2. Effects of Exercise on LV Systolic and Diastolic Function

<table>
<thead>
<tr>
<th></th>
<th>HFrEF Baseline</th>
<th>HFrEF Exercise</th>
<th>HFpEF Baseline</th>
<th>HFpEF Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastolic Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ePAD (mmHg)</td>
<td>23±3</td>
<td>44±8 *</td>
<td>22±7</td>
<td>46±12 *</td>
</tr>
<tr>
<td>ePAD/EDV (mmHg/mL)</td>
<td>0.10±0.03</td>
<td>0.17±0.03 *</td>
<td>0.17±0.03 #</td>
<td>0.36±0.05 *#</td>
</tr>
<tr>
<td>End Diastolic Stress (g/cm²)</td>
<td>52.5±22.4</td>
<td>126.4±57.4 *</td>
<td>28.6±11.6 #</td>
<td>57.8±19.5 *#</td>
</tr>
<tr>
<td>Systolic Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejection Fraction (%)</td>
<td>37±11</td>
<td>31±13 *</td>
<td>56±5 #</td>
<td>62±4 *#</td>
</tr>
<tr>
<td>Cardiac Output (L/min)</td>
<td>6.0±2.3</td>
<td>8.6±4.1 *</td>
<td>5.4±1.5</td>
<td>10.0±3.2 *</td>
</tr>
<tr>
<td>Ea (mmHg/mL)</td>
<td>0.94±0.20</td>
<td>1.21±0.72 *</td>
<td>1.20±0.31 #</td>
<td>1.37±0.35 *#</td>
</tr>
<tr>
<td>Ees (mmHg/mL)</td>
<td>0.55±0.22</td>
<td>0.46±0.15 *</td>
<td>1.57±0.51 #</td>
<td>2.23±0.68 *#</td>
</tr>
<tr>
<td>Ea/Ees</td>
<td>1.99±1.15</td>
<td>3.25±3.23 *</td>
<td>0.79±0.14 #</td>
<td>0.63±0.11#</td>
</tr>
<tr>
<td>Stroke Work (Kgf cm)</td>
<td>5.81±2.46</td>
<td>3.43±1.58 *</td>
<td>5.67±1.08</td>
<td>5.83±1.11#</td>
</tr>
<tr>
<td>PRSW (g/cm²)</td>
<td>46.9±17.0</td>
<td>26.9±11.6 *</td>
<td>61.1±10.5</td>
<td>62.9±12.7 #</td>
</tr>
<tr>
<td>End Systolic Stress (g/cm²)</td>
<td>112.8±38.6</td>
<td>154.2±55.1 *</td>
<td>45.4±7.2 #</td>
<td>43.6±6.8 #</td>
</tr>
</tbody>
</table>

Abbreviations: HFrEF = heart failure with a reduced ejection fraction (EF), HFpEF = heart failure with a preserved EF, ePAD = estimated pulmonary artery diastolic pressure, EDV = left ventricular (LV) end diastolic volume, Ea = effective arterial elastance, Ees = end systolic elastance, PRSW = preload recruitable stroke work, Data=Mean ± SD, *=p<0.05 versus Baseline, # = p<0.05 versus corresponding HFrEF.