Clinical Benefit of Eplerenone in Patients With Mild Symptoms of Systolic Heart Failure Already Receiving Optimal Best Practice Background Drug Therapy

Analysis of the EMPHASIS-HF Study

Henry Krum, MBBS, PhD; Harry Shi, MS; Bertram Pitt, MD; John McMurray, MD; Karl Swedberg, MD, PhD; Dirk J. van Veldhuisen, MD, PhD; John Vincent, MB, PhD; Stuart Pocock, PhD; Faiez Zannad, MD, PhD; for the EMPHASIS-HF Study Group

Background—In EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure), eplerenone significantly reduced major cardiovascular events versus placebo in 2737 patients with mild symptoms of heart failure and an ejection fraction of <35%, in addition to recommended therapy. However, it is not known whether such benefits were preserved in patients receiving optimal background drug therapy, that is, high doses of angiotensin-converting enzyme inhibitor (ACEi, or angiotensin receptor blocker), β-blocker, or both drug classes.

Methods and Results—We further analyzed EMPHASIS-HF according to the use and dose of these background drug classes. Patients receiving ≥50% of target dose were considered to be receiving high doses; patients on <50% or no drug comprised the low-dose group. The primary end point of the study (cardiovascular death/heart failure hospitalization), as well as all-cause mortality, was evaluated in this way. The beneficial clinical effects of eplerenone (as observed in the main study) were preserved for the EMPHASIS-HF primary end point in patients receiving higher doses of ACEi or angiotensin receptor blocker, β-blocker, or both (hazard ratio for eplerenone versus placebo, ACEi/angiotensin receptor blocker: high dose, 0.67; low dose, 0.65; β-blockers: high dose, 0.55; low dose, 0.72; both ACEi/angiotensin receptor blocker and β-blocker: high dose, 0.59; low dose, 0.68; P value for interaction 0.80, 0.15, and 0.53, respectively), as well as for all-cause mortality. There were no major safety issues, except a borderline increased risk of hypotension with eplerenone in those on high-dose ACEi or ACEi/β-blocker.

Conclusions—Eplerenone provides substantial benefit on major events (with an acceptable safety profile) in patients with mild symptoms of systolic heart failure, even in those already receiving high doses of standard background therapies.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00232180.

(Circ Heart Fail. 2013;6:711-718.)

Key Words: ACE inhibitor ■ aldosterone ■ angiotensin receptor blocker ■ β-blocker ■ eplerenone ■ heart failure

Chronic heart failure (HF) is a major public health problem, associated with high mortality, frequent hospitalization, and large cost burden to the healthcare system. Strategies to ameliorate this condition have focussed predominantly on blockade of key neurohormonal systems activated in this setting (eg, the renin–angiotensin–aldosterone system and sympathetic nervous systems). Mineralocorticoid receptor antagonists (MRAs) have been demonstrated to be beneficial in patients with HF and severe symptoms in RALES1 (Randomized Aldactone Evaluation Study) and more recently in mild (New York Heart Association class II) patients in the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure) study.4 In EMPHASIS-HF, patients were receiving standard HF therapies, that is, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs), as well as β-blockers, as background therapy. Patients were considered well treated with these medications, at least in terms of the percent receiving these agents. However, for whatever reason, not all patients were receiving high doses of these therapies. It is of both therapeutic and mechanistic interest to evaluate the impact of eplerenone in patients who are receiving optimal (ie, high dose) background therapies to determine whether the beneficial effects observed in the overall study are preserved or diminished in this particular setting.

Clinical Perspective on p 718
Accordingly, we conducted a subgroup analysis of EMPHASIS-HF to examine major clinical outcomes of EMPHASIS-HF according to background dose of ACEi (and ARB), β-blocker, and both classes of drug.

Methods

Study Patients

All randomized patients from the EMPHASIS-HF study contributed to this subgroup analysis. The characteristics of these patients have been well described previously, as have the inclusion and exclusion criteria of the study.5 Briefly, to qualify for randomization in EMPHASIS-HF, patients had to be >55 years of age, have New York Heart Association class II symptoms, and an ejection fraction of no more than 30% (or 30%–35% if QRS duration >130 ms), as well as receiving standard background HF therapy, comprising ACEi, ARB (or both), as well as β-blocker at recommended or maximal tolerated doses. Investigators were encouraged to uptitrate patients to highest stable doses of these therapies before randomization into the EMPHASIS-HF study.

Dosing Equivalent of Background Drugs

A target daily dose was established based on approved dose ranges and targets for individual ACEi, ARBs, and β-blockers (Table 1). The percentage daily dose of the individual patient was determined based on the total daily dose expressed as a percentage of the target daily dose of each agent being taken at baseline (before randomization). From this, outcomes according to patients receiving less or greater than 50% target dose were derived.

Study Outcomes

Assessment was made according to target dose, with patients receiving ≤50% of target daily dose considered to be receiving low dose and >50% high dose. Patients not taking a particular drug class were considered to be in the low-dose group. Groups evaluated separately were as follows:

- ACEi (and ARB) ≥50%, versus <50% target dose.
- β-blocker ≥50%, versus <50% target dose.
- Both ACEi and β-blocker ≥50%, versus at least one of ACEi or β-blocker <50% target dose.

Outcomes evaluated according to background drug dose were the EMPHASIS-HF primary end point (time to first event of cardiovascular [CV] death or HF hospitalization) and all-cause mortality. In addition, relevant safety end points (frequency of hyperkalemia, estimated glomerular filtration rate [eGFR], clinical hypotension) were also evaluated according to background drug dose.

Statistical Analysis

The following analyses are performed on the background drug groups defined above. Descriptive statistics are summarized for the baseline data, including demographics and relevant baseline data. The efficacy analyses on the primary end point (HF hospitalization/CV death) and all-cause mortality are performed using a Cox proportional hazards model.
model, including treatment, subgroup, and treatment by subgroup interaction. In addition, the frequency of serum potassium ≥5.5 mmol/L and hypotension adverse event were analyzed using Fisher exact test, and eGFR and blood pressure data at end of study are also summarized.

Results

Main Study Results

The EMPHASIS-HF primary outcome (time to first event of CV death or HF hospitalization) occurred in 18.3% of patients in the eplerenone group compared with 25.9% in the placebo group (hazard ratio [HR], 0.63; 95% confidence interval, 0.54–0.74; \( P < 0.001 \)). Death (all-cause) occurred in 12.5% of patients receiving eplerenone and in 15.5% of those receiving placebo (HR, 0.76; 95% confidence interval, 0.62–0.93; \( P = 0.008 \)). Eplerenone was overall well tolerated; however, there were increases compared with placebo (as expected) in rates of worsened renal function, hyperkalemia, and hypotension. However, there were no differences between groups in rate of adverse events, leading to permanent withdrawal of study drug.

Baseline Patient Characteristics According to Background Drug Dose

Key patient characteristics, when subdivided according to background drug and dose, are summarized in Tables 2–4.
In general, patients were well matched with regard to these key demographic characteristics, despite the number of patients in specific subgroups being relatively small in some circumstances.

**Efficacy End Points According to Background Drug Dose**

Table 5 summarizes the effect of eplerenone versus placebo on the study’s primary end point (CV death/HF hospitalization) according to dose of background neurohormonal antagonist drug therapy. Specifically, there was no significant difference in this outcome according to high (>50%) versus low dose of ACEi (or ARB), β-blocker, or both ACEi (or ARB) and β-blocker. 

### Table 5. EMPHASIS-HF Primary End Point (CV Death/HF Hospitalization) According to Background Dose of Key Neurohormonal Agents

<table>
<thead>
<tr>
<th>Dose Range</th>
<th>Eplerenone, %</th>
<th>Placebo, %</th>
<th>Hazard Ratio</th>
<th>P Value for Dose×Treatment Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi ≥ 50% dose (n=1530)</td>
<td>131 (16.9)</td>
<td>181 (24.0)</td>
<td>0.67</td>
<td>0.80</td>
</tr>
<tr>
<td>ACEi &lt; 50% dose (n=1207)</td>
<td>118 (20.1)</td>
<td>175 (28.3)</td>
<td>0.65</td>
<td>0.15</td>
</tr>
<tr>
<td>BB ≥ 50% dose (n=1081)</td>
<td>73 (13.6)</td>
<td>121 (22.2)</td>
<td>0.55</td>
<td>0.53</td>
</tr>
<tr>
<td>BB &lt; 50% dose (n=1656)</td>
<td>176 (21.3)</td>
<td>235 (28.4)</td>
<td>0.72</td>
<td>0.76</td>
</tr>
<tr>
<td>ACEi and BB ≥ 50% dose (n=736)</td>
<td>51 (13.7)</td>
<td>78 (21.4)</td>
<td>0.71</td>
<td>0.81</td>
</tr>
<tr>
<td>At least one of ACEi or BB &lt; 50% dose (n=2001)</td>
<td>198 (19.9)</td>
<td>278 (27.6)</td>
<td>0.68</td>
<td>0.68</td>
</tr>
</tbody>
</table>

ACEi indicates angiotensin-converting enzyme inhibitor; BB, β-blocker; CV, cardiovascular; and HF, heart failure.

P values for interaction between high and low doses for the EMPHASIS-HF primary end point were not significant. The HRs for eplerenone versus placebo for the EMPHASIS-HF primary end point were as follows: ACEi/ARB: high dose, 0.77; low dose, 0.79; β-blockers: high dose, 0.71; low dose, 0.81; both ACEi/ARB and β-blocker: high dose, 0.83; low dose, 0.76.

### Safety End Points According to Background Drug Dose

Table 7 summarizes the effect of eplerenone versus placebo on incident hyperkalemia according to dose of background neurohormonal antagonist drug therapy. As expected, there was a greater incidence of hyperkalemia in the eplerenone group compared with placebo. However, there was little evidence of greater absolute rate of hyperkalemia events in patients receiving high doses versus low doses of background agents. Furthermore, there was no significant interaction observed for HRs between high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

### Table 6. All-Cause Mortality According to Background Dose of Key Neurohormonal Agents

<table>
<thead>
<tr>
<th>Dose Range</th>
<th>Eplerenone, %</th>
<th>Placebo, %</th>
<th>Hazard Ratio</th>
<th>P Value for Dose×Treatment Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi ≥ 50% dose (n=1530)</td>
<td>88 (11.3)</td>
<td>110 (14.6)</td>
<td>0.77</td>
<td>0.90</td>
</tr>
<tr>
<td>ACEi &lt; 50% dose (n=1207)</td>
<td>83 (14.1)</td>
<td>103 (16.6)</td>
<td>0.79</td>
<td>0.58</td>
</tr>
<tr>
<td>BB ≥ 50% dose (n=1081)</td>
<td>56 (10.4)</td>
<td>74 (13.6)</td>
<td>0.71</td>
<td>0.76</td>
</tr>
<tr>
<td>BB &lt; 50% dose (n=1656)</td>
<td>115 (13.9)</td>
<td>139 (16.8)</td>
<td>0.81</td>
<td>0.70</td>
</tr>
<tr>
<td>ACEi and BB ≥ 50% dose (n=736)</td>
<td>41 (11.1)</td>
<td>46 (12.6)</td>
<td>0.83</td>
<td>0.68</td>
</tr>
<tr>
<td>At least one of ACEi or BB &lt; 50% dose (n=2001)</td>
<td>130 (13.1)</td>
<td>167 (16.6)</td>
<td>0.76</td>
<td>0.53</td>
</tr>
</tbody>
</table>

ACEi indicates angiotensin-converting enzyme inhibitor; and BB, β-blocker.
Similarly, 87% of patients were receiving β-blockers. Receiving an ACEi, 19% ARB, and 94% either agent or both. In the EMPHASIS-HF study, 77% of patients were receiving these background therapies derived similar benefit for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. With eplerenone as regards the primary study end point (CV death or HF hospitalization) versus those who were not receiving these agents. However, analysis according to dosing of these agents has not been previously performed within the EMPHASIS-HF cohort. This is of importance as the question arises as to whether the benefits of eplerenone are maintained in the setting of higher doses of these agents. Alternatively, it may be argued that the same outcome benefit may be achieved by simply increasing the dose of background medication. When use of ivabradine additional to β-blockers was examined in this way in SHIFT (Systolic Heart Failure treatment with I inhibitor ivabradine Trial), the magnitude of benefit of ivabradine in patients receiving >50% of dose of β-blocker was substantially reduced in comparison with the overall population. In contrast, the present analysis of EMPHASIS-HF demonstrates that the HRs generated for CV death/HF hospitalization or all-cause mortality with the MRA eplerenone were of similar magnitude above and below 50% target dose for ACEi (or ARB) or β-blocker. Furthermore, this benefit was maintained in patients who had >50% of dosing for both background agents. These findings support the concept that addition of an MRA to background high-dose ACEi and β-blockers provides substantial additional clinical outcome benefit. Although a head-to-head comparison of eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers.

Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone as regards the primary study end point (CV death or HF hospitalization) versus those who were not receiving these agents. However, analysis according to dosing of these agents has not been previously performed within the EMPHASIS-HF cohort. This is of importance as the question arises as to whether the benefits of eplerenone are maintained in the setting of higher doses of these agents. Alternatively, it may be argued that the same outcome benefit may be achieved by simply increasing the dose of background medication. When use of ivabradine additional to β-blockers was examined in this way in SHIFT (Systolic Heart Failure treatment with I inhibitor ivabradine Trial), the magnitude of benefit of ivabradine in patients receiving >50% of dose of β-blocker was substantially reduced in comparison with the overall population. In contrast, the present analysis of EMPHASIS-HF demonstrates that the HRs generated for CV death/HF hospitalization or all-cause mortality with the MRA eplerenone were of similar magnitude above and below 50% target dose for ACEi (or ARB) or β-blocker. Furthermore, this benefit was maintained in patients who had >50% of dosing for both background agents. These findings support the concept that addition of an MRA to background high-dose ACEi and β-blockers provides substantial additional clinical outcome benefit. Although a head-to-head comparison of eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.

**Discussion**

The present analysis examined whether the beneficial effects of eplerenone observed in the overall EMPHASIS-HF study were maintained in the subgroup of patients receiving optimal best practice background drug therapy comprising use of high-dose ACEi (or ARB) or β-blocker or both. This analysis is of relevance to the drug management of systolic HF patients with New York Heart Association class II symptoms as well as being of considerable mechanistic interest. ACEi and β-blockers are well established as mandatory life-saving background therapy in such patients. However, it is well established that not all patients are able to tolerate these medications, and those that do often cannot reach target doses of these therapies for reasons of intolerance and adverse events. In the EMPHASIS-HF study, 77% of patients were receiving an ACEi, 19% ARB, and 94% either agent or both. Similarly, 87% of patients were receiving β-blockers. Predefined subgroup analysis has determined that patients receiving these background therapies derived similar benefit with eplerenone versus placebo, irrespective of receiving high- and low-dose background therapy for ACEi (or ARB), β-blocker, or both agents.
study of increasing dose of these background agents versus
the addition of eplerenone has not yet been performed, these
findings would suggest that eplerenone may be the preferred
strategy in this regard. However, this was not formally tested
in the EMPHASIS-HF study nor has it been studied in other
trials of MRAs in HF.

As mentioned, this analysis is also of considerable mecha-
nistic interest and importance. As mentioned, there was main-
tenance of the overall benefit observed with eplerenone in
the subgroup receiving high-dose ACEi and β-blocker. These
findings suggest that the aldosterone inhibitory effect of a con-
ventional strategy is either suboptimal or associated with clin-
ically relevant aldosterone escape. These findings support the
need for direct mineralocorticoid receptor blockade to maxi-
mize renin–angiotensin–aldosterone blockade and associated
clinical benefits. However, serum aldosterone levels were not
analyzed in the present analysis, so this remains a hypothesis
still to be formally tested.

The results of this analysis are also of relevance to the
ongoing debate regarding how best to maximize the bene-
fits of neurohormonal blockade in various CV settings, but
specifically in systolic chronic HF. It is, however, uncertain
whether 2 or 3 (or more) neurohormonal blocking agents are
the optimal approach when added to standard background
treatment. The data have been mixed in this regard. For ex-
ample, the benefits of adding the ARB candesartan seemed to be
preserved, irrespective of dose of ACEi background therapy in
CHARM (Conduction in Heart Failure: Assessment of
Reduction in Mortality and Morbidity)-Added. In contrast,
in Val-HeFT (Valsartan Heart Failure Trial), the benefi-
cial effects of valsartan were progressively attenuated with
increasing dose of background ACEi. The data seem more
clear-cut with MRA therapy; in both EPHESUS (Eplerenone
Post-Acute Myocardial Infarction Heart Failure Efficacy and
Survival Study) and now EMPHASIS-HF, the efficacy ben-
efits of this strategy seem to be preserved in the setting of
maximized background therapy.

With regard to safety, the present subgroup analysis eval-
uated hyperkalemia and renal function according to use of
eplerenone versus placebo and background ACEi (or ARB)
or β-blocker dose (as well as for both background agents
combined). The findings of this subgroup analysis would
suggest that 2 of the most feared adverse events of MRAs
(hyperkalemia, worsened renal function) do not occur with
significantly greater frequency when added to high-
dose (versus low-dose) background neurohormonal drug
therapy. Analysis of the impact of background neurohor-
omonal drug dose on incidence of hypotension or postural
hypotension does however suggest a borderline increase in
risk of this adverse event in patients receiving high-dose
(>50% dose) ACEi or ACEi combined with β-blocker at
high dose.

Given that HF guidelines worldwide recommend highest
tolerated dose of ACEi and β-blockers, the findings of the
present subgroup analysis suggest that efficacy of eplerenone
is maintained additional to these recommended drugs and
doses and that safety is not unduly compromised in this setting
(i.e., patients with systolic HF and mild symptoms).

### Table 7. Incident Hyperkalemia (Any Occurrence of Serum Potassium>5.5 mmol/L) According to Background Dose of Key
Neurohormonal Agents

<table>
<thead>
<tr>
<th>Dose of Key Neurohormonal Agents</th>
<th>Eplerenone, %</th>
<th>Placebo, %</th>
<th>P Value by Fisher Exact Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi≥50% dose (n=1530)</td>
<td>12.6</td>
<td>7.0</td>
<td>0.0003</td>
</tr>
<tr>
<td>ACEi&lt;50% dose (n=1207)</td>
<td>10.8</td>
<td>7.4</td>
<td>0.043</td>
</tr>
<tr>
<td>BB≥50% dose (n=1081)</td>
<td>10.8</td>
<td>7.9</td>
<td>0.14</td>
</tr>
<tr>
<td>BB&lt;50% dose (n=1656)</td>
<td>12.5</td>
<td>6.7</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>ACEi and BB≥50% dose (n=736)</td>
<td>11.2</td>
<td>6.5</td>
<td>0.027</td>
</tr>
<tr>
<td>At least one of ACEi or BB&lt;50%</td>
<td>12.1</td>
<td>7.4</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

ACEi indicates angiotensin-converting enzyme inhibitor; and BB, β-blocker.
In summary, the present subgroup analysis of EMPHASIS-HF has found that MRA eplerenone provided substantial clinical benefit and acceptable safety, even in the setting of high-dose background ACEi (or ARB) or β-blocker or both. Thus, use of eplerenone should be strongly considered, irrespective of dose of background neurohormonal antagonist therapy in systolic HF patients with mild (New York Heart Association class II) symptoms.

Sources of Funding
The EMPHASIS-HF study was supported by Pfizer.

Disclosures
Drs Krum, Pitt, McMurray, Swedberg, van Veldhuisen, Pocock, and Zannad are members of the EMPHASIS-HF Writing Committee and report receiving support from the study sponsor, Pfizer Inc, for participation in and traveling to meetings of the committee. H. Shi and Dr Vincent are currently employed by Pfizer and own stock in Pfizer Inc, the makers of eplerenone. Dr Krum reports receiving travel reimbursements from Pfizer. H. Shi and Dr Vincent report being employees of Pfizer and receiving stock options and travel reimbursements from Pfizer. Dr Pitt reports receiving fees for serving on the board of Novartis, consulting fees from Takeda, AstraZeneca, Boehringer Ingelheim, GE Healthcare, Relypsa, BG Medicine, Nile Therapeutics, Merck, Forest Laboratories, and Novartis, grant support from Forest Laboratories and Novartis, and stock options from Relypsa, BG Medicine, Nile Therapeutics, and Aurasenc and that his institution receives grant support from Forest Laboratories on his behalf and he and his institution receive grant support from Bayer. Dr McMurray reports receiving grant support from the Eugene Braunwald Endowment for the Advancement of Cardiovascular Discovery and Care. Dr Swedberg has received research support from Pfizer, Amgen, Novartis, and Servier. Dr Pocock reports receiving consulting fees from Servier, Amgen, AstraZeneca, and Novartis and that his institution receives grants from Servier and AstraZeneca on his behalf. Dr Zannad reports receiving fees for serving on the board of Boston Scientific, consulting fees from Novartis, Takeda, AstraZeneca, Boehringer Ingelheim, GE Healthcare, Relypsa, Servier, Boston Scientific, Bayer, Johnson & Johnson, and Resmed, and speaker’s fees from Pfizer and AstraZeneca and that his institution receives grant support from BG Medicine and Roche Diagnostics on his behalf.

Table 8. eGFR at End Study According to Background Dose of Key Neurohormonal Agents

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Eplerenone, % Mean</th>
<th>SD</th>
<th>Placebo, % Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEi ≥50% dose (n=1530)</td>
<td>68.6</td>
<td>22.3</td>
<td>68.9</td>
<td>20.9</td>
</tr>
<tr>
<td>ACEi &lt;50% dose (n=1207)</td>
<td>68.3</td>
<td>24.2</td>
<td>69.8</td>
<td>25.0</td>
</tr>
<tr>
<td>BB ≥50% dose (n=1081)</td>
<td>69.0</td>
<td>22.2</td>
<td>69.1</td>
<td>22.2</td>
</tr>
<tr>
<td>BB &lt;50% dose (n=1656)</td>
<td>68.1</td>
<td>23.8</td>
<td>69.4</td>
<td>23.2</td>
</tr>
<tr>
<td>ACEi and BB ≥50% dose (n=736)</td>
<td>68.4</td>
<td>22.2</td>
<td>69.1</td>
<td>20.1</td>
</tr>
<tr>
<td>At least one of ACEi or BB &lt;50% dose (n=2001)</td>
<td>68.5</td>
<td>23.6</td>
<td>69.4</td>
<td>23.7</td>
</tr>
</tbody>
</table>

ACEi indicates angiotensin-converting enzyme inhibitor; BB, β-blocker; and eGFR, estimated glomerular filtration rate.

All P values by Fisher exact test >0.05 for eplerenone vs placebo.

Table 9. Incident Hypotension or Postural Hypotension According to Background Dose of Key Neurohormonal Agents

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Adverse Event</th>
<th>Eplerenone n/N (%)</th>
<th>Placebo n/N (%)</th>
<th>P value Fisher Exact Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE inhibitors &gt;50% target dose</td>
<td>Hypotension</td>
<td>30/772 (3.9)</td>
<td>17/752 (2.3)</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>6/772 (0.8)</td>
<td>3/752 (0.4)</td>
<td>0.507</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>35/772 (4.5)</td>
<td>20/752 (2.7)</td>
<td>0.055</td>
</tr>
<tr>
<td>ACE inhibitors &lt;50% target dose</td>
<td>Hypotension</td>
<td>16/588 (2.7)</td>
<td>20/617 (3.2)</td>
<td>0.616</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>1/588 (0.2)</td>
<td>7/617 (1.1)</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>17/588 (2.9)</td>
<td>25/617 (4.1)</td>
<td>0.346</td>
</tr>
<tr>
<td>β-Blockers &gt;50% target dose</td>
<td>Hypotension</td>
<td>16/533 (3.0)</td>
<td>12/543 (2.2)</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>5/533 (0.9)</td>
<td>6/543 (1.1)</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>20/533 (3.8)</td>
<td>17/543 (3.1)</td>
<td>0.618</td>
</tr>
<tr>
<td>β-Blockers &lt;50% target dose</td>
<td>Hypotension</td>
<td>30/827 (3.6)</td>
<td>25/826 (3.0)</td>
<td>0.584</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>2/827 (0.2)</td>
<td>4/826 (0.5)</td>
<td>0.452</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>32/827 (3.9)</td>
<td>28/826 (3.4)</td>
<td>0.694</td>
</tr>
<tr>
<td>ACE inhibitors ≥50% target dose and β-blockers ≥50% target dose</td>
<td>Hypotension</td>
<td>13/369 (3.5)</td>
<td>5/363 (1.4)</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>5/369 (1.4)</td>
<td>2/363 (0.6)</td>
<td>0.451</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>17/369 (4.6)</td>
<td>7/363 (1.9)</td>
<td>0.060</td>
</tr>
<tr>
<td>ACE inhibitors &lt;50% target dose and β-blockers &lt;50% target dose</td>
<td>Hypotension</td>
<td>33/991 (3.3)</td>
<td>32/1006 (3.2)</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
<td>2/991 (0.2)</td>
<td>8/1006 (0.8)</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>35/991 (3.5)</td>
<td>38/1006 (3.8)</td>
<td>0.812</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin-converting enzyme.
References


CLINICAL PERSPECTIVE

Eplerenone has been shown to be of benefit in patients with mild symptoms of systolic heart failure in the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure) study. However, it is uncertain whether those clinical benefits remain significant when the agent is added to best practice background therapy, that is, high doses of angiotensin-converting enzyme inhibitor (or angiotensin receptor blocker), β-blocker, or both. We therefore analyzed major outcomes in EMPHASIS-HF according to dose of these key background heart failure therapies. The findings were that major clinical benefits were generally preserved with eplerenone even when added to higher doses of these background therapies. These findings should also be considered in the context of the safety profile of addition of eplerenone to high-dose background therapy. In general, safety was found to be acceptable. The clinical implication of these findings is that, even in patients in whom high doses of background therapies are used, a mineralocorticoid receptor antagonist is of benefit in this patient population.
Clinical Benefit of Eplerenone in Patients With Mild Symptoms of Systolic Heart Failure Already Receiving Optimal Best Practice Background Drug Therapy: Analysis of the EMPHASIS-HF Study

Henry Krum, Harry Shi, Bertram Pitt, John McMurray, Karl Swedberg, Dirk J. van Veldhuisen, John Vincent, Stuart Pocock and Faiez Zannad for the EMPHASIS-HF Study Group

Circ Heart Fail. 2013;6:711-718; originally published online April 26, 2013; doi: 10.1161/CIRCHEARTFAILURE.112.000173

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/6/4/711

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/