A 30-year-old woman presented 1-month postpartum with new-onset biventricular heart failure for which no other contributing cause could be found clinically or on laboratory investigations. Her 2 previous pregnancies were uncomplicated. She was HIV-positive for the preceding 3 years, but had never been on antiretroviral therapy.

Initial echocardiography revealed a left ventricular (LV) end-diastolic diameter of 59 mm and LV ejection fraction of 32% (online-only Data Supplement Movies 1 and 2). There was evidence of LV noncompaction involving the apex and midinferior and midlateral walls of the LV that satisfied the Jenni criteria (Figure 1). There was no echocardiographic evidence of other congenital or organic valvular disease. Speckle tracking revealed rigid body rotation (ie, rotation at both the basal and apical levels of the LV occurred in a counterclockwise direction during systole; Figure 2). The patient was treated with furosemide, carvedilol, an angiotensin-converting enzyme inhibitor, and spironolactone. On reevaluation 6 months later, her functional status was New York Heart Association Class 1. Echocardiography revealed that LV ejection fraction was now 48% (online-only Data Supplement Movies 3 and 4). Further speckle-tracking analysis revealed that the LV’s base and apex were now rotating in the opposite directions as would be normally expected (Figure 3).

This report is the first to our knowledge that describes a patient with evidence of reversible rigid body rotation who satisfies the clinical criteria for the diagnosis of both peripartum cardiomyopathy and LV noncompaction.

Discussion
Peripartum cardiomyopathy is defined as the development of heart failure in the last month of pregnancy or within 5 months of delivery with no other identifiable cause for its onset.1 An association of LV noncompaction and peripartum cardiomyopathy was recently described.2 Rigid body rotation often occurs in patients with LV noncompaction and has been suggested as a functional diagnostic criteria.3 The normal rotational patterns of the apex and base occur because of the opposite movements of the subepicardial and subendocardial fibers during systole. The subepicardial fibers have a longer rotatory arm and, thus, exert the dominant force that causes the base to move clockwise and the apex counterclockwise during systole.

We postulate that, in this case, a differential pathophysiological process (such as focal myocarditis/myocardial edema) caused dysfunction of the basal and midwall subepicardial fibers such that the predominant effect was exerted by the subendocardial fibers in this region, leading to counterclockwise rotation. Although some degree of apical dysfunction occurred, the degree of abnormality was less extensive and, thus, did not negate the overall dominance of the subepicardial fibers, thereby causing counterclockwise rotation at the apex. The resolution of this pathophysiological process, characterized by improved LV ejection fraction, was accompanied by restoration of a normal twist pattern.

There are several limitations to this report. No cardiac MRI was performed to exclude myocarditis, although there were no clinical or biochemical abnormalities to suggest it. The impacts of varying loading conditions in the postpartum period as well as neurohumoral abnormality may vary with a later compensated state, and may account for the remodeling changes and reversal of twist patterns.

Reversal of rigid body rotation is an important finding that may account for improvement of LV ejection fraction and clinical status in peripartum cardiomyopathy, and requires further investigation.

Acknowledgments
We gratefully acknowledge Joe Grundle and Katie Klein for their editorial assistance with the article and Brian Miller and Brian Schurrer for their help with figures.

© 2013 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org

Received May 13, 2013; accepted July 10, 2013.
From the Division of Cardiology, Chris Hani Baragwanath Hospital and University of the Witwatersrand, Johannesburg, South Africa (F.P., C.d.S., S.G., F.B., M.R.E.); and Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke’s Medical Centers, University of Wisconsin School of Medicine and Public Health, Milwaukee, WI (B.K.K.).

The online-only Data Supplement is available at http://circheartfailure.ahajournals.org/lookup/suppl/doi:10.1161/CIRCHEARTFAILURE.113.000492/-/DC1.

Correspondence to Bijoy K. Khandheria, MD, Aurora Cardiovascular Services, 2801 W. Kinnickinnic River Parkway, #840, Milwaukee, WI 53215. E-mail publishing22@aurora.org

(Circ Heart Fail. 2013;6:e62–e63.)

© 2013 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org

DOI: 10.1161/CIRCHEARTFAILURE.113.000492

Images and Case Reports in Heart Failure

Peripartum Cardiomyopathy Associated With Left Ventricular Noncompaction Phenotype and Reversible Rigid Body Rotation

Ferande Peters, MD; Bijoy K. Khandheria, MD; Claudia dos Santos, MSc; Samantha Govender, BSc; Francois Botha, MD; Mohammed R. Essop, MD
Disclosures

None.

References


Keywords: biventricular heart failure ■ ejection fraction ■ left ventricular noncompaction ■ peripartum cardiomyopathy ■ rigid body rotation The ratio of noncompacted (yellow, 15.6 mm) to compacted (red, 2.9 mm) myocardium is >2 and diagnostic of left ventricular noncompaction. B and C, Parasternal short-axis views at the level of the left ventricular apex depicting flow within the intertrabecular spaces communicating with the left ventricular cavity.

Figure 1. A, The ratio of noncompacted (yellow, 15.6 mm) to compacted (red, 2.9 mm) myocardium is >2 and diagnostic of left ventricular noncompaction. B and C, Parasternal short-axis views at the level of the left ventricular apex depicting flow within the intertrabecular spaces communicating with the left ventricular cavity.

Figure 2. Rotation patterns at the base (A), middle (B), and apex (C) of the left ventricle at the time of diagnosis are depicted. The blue curve represents subendocardial rotation, and the gold curve represents subepicardial rotation. In all instances the bulk rotation (green curve) is positive during systole. This is in keeping with counterclockwise rigid body rotation, which occurs when the base and apex move in the same direction during systole and not opposite to each other as would be expected. BA indicates basal anterior wall; BAL, basal anterior lateral wall; BAS, basal anterior septum; BI, basal inferior wall; BIL, basal inferolateral wall; BIS, basal inferior septum; MA, midanterior wall; MAL, midanterolateral wall; MAS, midanteror septum; MI, midinferior wall; MIL, midinferolateral wall; and MIS, midinferior septum.

Figure 3. Rotation patterns at the base (A), middle (B), and apex (C) of the left ventricle at the time of follow-up are depicted. Rotation at the base and midventricle is now clockwise (negative) >50% of the time, including at the time peak apical rotation occurs. Rotation at the apex is entirely counterclockwise. In this instance, the pattern of rotation is normal and some degree of twist occurs. BA indicates basal anterior wall; BAL, basal anterior lateral wall; BAS, basal anterior septum; BI, basal inferior wall; BIL, basal inferolateral wall; BIS, basal inferior septum; MA, midanterior wall; MAL, midanterolateral wall; MAS, midanteror septum; MI, midinferior wall; MIL, midinferolateral wall; and MIS, midinferior septum.
Peripartum Cardiomyopathy Associated With Left Ventricular Noncompaction Phenotype and Reversible Rigid Body Rotation

Ferande Peters, Bijoy K. Khandheria, Claudia dos Santos, Samantha Govender, Francois Botha and Mohammed R. Essop

Circ Heart Fail. 2013;6:e62-e63
doi: 10.1161/CIRCHEARTFAILURE.113.000492

Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/6/5/e62

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/