Low-Sodium DASH Diet Improves Diastolic Function and Ventricular–Arterial Coupling in Hypertensive Heart Failure With Preserved Ejection Fraction

Scott L. Hummel, MD, MS; E. Mitchell Seymour, PhD; Robert D. Brook, MD; Samar S. Sheth, MD; Erina Ghosh, MS; Simeng Zhu; Alan B. Weder, MD; Sándor J. Kovács, PhD, MD; Theodore J. Kolias, MD

Background—Heart failure with preserved ejection fraction (HFPEF) involves failure of cardiovascular reserve in multiple domains. In HFPEF animal models, dietary sodium restriction improves ventricular and vascular stiffness and function. We hypothesized that the sodium-restricted dietary approaches to stop hypertension diet (DASH/SRD) would improve left ventricular diastolic function, arterial elastance, and ventricular–arterial coupling in hypertensive HFPEF.

Methods and Results—Thirteen patients with treated hypertension and compensated HFPEF consumed the DASH/SRD (target sodium, 50 mmol/2100 kcal) for 21 days. We measured baseline and post-DASH/SRD brachial and central blood pressure (via radial arterial tonometry) and cardiovascular function with echocardiographic measures (all previously invasively validated). Diastolic function was quantified via the parametrized diastolic filling formalism that yields relaxation/viscoelastic (c) and passive/stiffness (k) constants through the analysis of Doppler mitral inflow velocity (E-wave) contours. Effective arterial elastance (E_a) end-systolic elastance (E_{es}) and ventricular–arterial coupling (defined as the ratio E_{es}/E_a) were determined using previously published techniques. Wilcoxon matched-pairs signed-rank tests were used for pre–post comparisons. The DASH/SRD reduced clinic and 24-hour brachial systolic pressure (155±35 to 138±30 and 130±16 to 123±18 mm Hg; both $P=0.02$), and central end-systolic pressure trended lower (116±18 to 111±16 mm Hg; $P=0.12$). In conjunction, diastolic function improved ($c=24.3±5.3$ to $22.7±8.1$ g/s; $P=0.03$; $k=252±115$ to $170±37$ g/s²; $P=0.03$), E_{es} decreased (2.0±0.4 to 1.7±0.4 mm Hg/mL; $P=0.007$), and ventricular–arterial coupling improved ($E_{es}/E_a=1.5±0.3$ to $1.7±0.4$; $P=0.04$).

Conclusions—In patients with hypertensive HFPEF, the sodium-restricted DASH diet was associated with favorable changes in ventricular diastolic function, arterial elastance, and ventricular–arterial coupling.

Key Words: diet ■ heart failure, diastolic ■ preserved left ventricular function ■ salt-sensitivity hypertension ■ ventricular/vascular coupling hemodynamics

© 2013 American Heart Association, Inc.

Circ Heart Fail is available at http://circheartfailure.ahajournals.org

DOI: 10.1161/CIRCHEARTFAILURE.113.000481
sodium-restricted dietary approaches to stop hypertension diet (DASH/SRD) reduced BP and oxidative stress in patients with hypertensive HFPEF. We hypothesized that the DASH/SRD would improve Doppler-based indices of left ventricular diastolic function, arterial elastance, and V–A coupling in human hypertensive HFPEF.

Methods

This investigation conformed with the Declaration of Helsinki and was approved by the University of Michigan Institutional Review Board. All subjects provided written informed consent, and study conduct followed institutional guidelines.

Patient Selection and Study Structure

All patients had a history of systemic hypertension and left ventricular ejection fraction ≥50% with no history of ejection fraction <40%. The remainder of the inclusion and exclusion criteria were patterned after the 2007 European Society of Cardiology HFPEF diagnostic guidelines. Specifically, patients were required to have objective evidence of diastolic dysfunction on echocardiography or catheterization or indeterminate diastolic function and B-type natriuretic peptide ≥100 pg/mL.

Exclusion criteria included New York Heart Association class IV symptoms; hospitalization or medication changes within 1 month; noncardiac limitation of exercise capacity (eg, because of pulmonary disease); significant valvular heart disease; infiltrative, restrictive, or primary hypertrophic cardiomyopathy; severe anemia (hemoglobin <9 g/dL); uncontrolled diabetes mellitus (hemoglobin A1c >9%); and severe uncontrolled hypertension (systolic BP >180 on current regimen). Patients with severe renal insufficiency (estimated glomerular filtration rate <30 mL/min per 1.73 m²) or history of >6.0 mmol/L) were also excluded.

The study took place for 25 days, with 2 days of testing before and after 21 days of DASH/SRD. Subjects were provided all food and beverages (except water, tea, and coffee) for the 21-day study diet period.

On day 1, patients presented on their habitual diet having taken their usual morning medications. Seated clinic BPs and 6-minute walk testing were performed; patients returned home on their habitual diet for ambulatory BP measurement and 24-hour urinary collection. On day 2, patients presented fasting and before taking morning anti-hypertensives; they underwent transthoracic echocardiography, vascular testing, and blood sampling. Subjects began the DASH/SRD on day 3, and on days 24 and 25, they had identical testing to days 1 and 2. Further information on the study protocol can be found in our previous publication.

Characteristics of Study Diet, Tracking of Dietary Adherence

The study diet was prepared by research dietitians in a metabolic kitchen at the University of Michigan Clinical Research Unit, with the goal of daily sodium intake of 50 mmol (1150 mg)/2100 kcal and energy intake to maintain lean body mass while meeting DASH diet nutritional targets. Adherence was confirmed with 3-day food diaries and 24-hour urinary sodium and potassium measurement. Additional description of the study diet can be found in our previous publication.

Blood Pressure and Functional Testing

Two seated clinic BPs were obtained per Joint National Committee (Seventh Report) recommendations. Ambulatory BP monitoring was performed per British Society of Hypertension guidelines using the Spacelabs 90207 monitor (Spacelabs Healthcare, Issaquah, WA). Transthoracic echocardiography was performed using the Acuson Sequoia C512 (Siemens USA, Malvern, PA), and central BP was measured with the Sphygmocor radial artery tonometer (AtCor Medical, Itasca, IL). Six-minute walk testing was performed per American Thoracic Society guidelines.

EchocardioGraphic Measures

All echocardiograms were performed by experienced research sonographers. Ventricular structure and function were assessed using standard techniques according to American Society of Echocardiography recommendations for clinical studies. The left ventricular dimensions were measured in a 2-dimensional parasternal long-axis view. Left ventricular mass was calculated using the Devereux formula and left ventricular ejection fraction and volumes by the method of Dumesnil et al.

The ventricular stroke volume was calculated by integrating the pulse-wave Doppler velocity–time profile of the left ventricular outflow tract (LVOT) in the apical 5-chamber view and multiplying by the LVOT area (determined using the diameter measured immediately proximal to aortic valve leaflet insertion in the parasternal long-axis view). Cardiac output was obtained by multiplying the stroke volume by heart rate, and systemic vascular resistance was estimated by dividing mean arterial pressure by cardiac output (assuming negligible right atrial pressure).

In addition to standard Doppler-derived echocardiographic measures, diastolic function was assessed using the parameterized diastolic filling (PDF) formalism. This method characterizes suction-initiated ventricular filling in terms analogous to damped harmonic oscillatory motion. In this construct, model-based analysis of Doppler mitral inflow velocity (E-wave) contours yields passive/stiffness (k, spring constant), relaxation/viscoelastic (c, damping constant), and load (L, initial spring displacement) indices that can be used to generate several indices such as available potential energy (ergs) for filling (1/2 kE). The PDF formalism has been validated extensively using invasive (high fidelity) hemodynamic methods and is highly reproducible in patients with normal left ventricular ejection fraction and elevated filling pressures.

The Sphygmocor radial artery tonometer uses an invasively validated general transfer function to generate central aortic pressures and waveforms. The central end-systolic BP is measured at the incisure of the Sphygmocor-generated aortic pressure wave. Effective arterial elastance was calculated as the ratio of central end-systolic pressure to the ventricular stroke volume. The end-systolic ventricular elastance was measured as per the single-beat echocardiographic method of Chen et al. As in other studies of ventricular–arterial (V–A) interaction, the V–A coupling ratio was defined as E/e′. To further explore the effects of changes in ventricular–vascular interactions, we measured the left ventricular mechanical energetic efficiency as the ratio of left ventricular stroke work to the pressure–volume area as recently described by Lam et al. The E parameter is sometimes considered a surrogate for ventricular contractile function but also depends on intrinsic ventricular stiffness. We also assessed ventricular contractility using the maximum rate of change of pressure-normalized stress (dP/dt max), which indexes the maximal flow generated in the LVOT to the ventricular mass. The dP/dt max is reduced in HFPEF, discriminates between HFPEF and controls better than standard diastolic function measures, and correlates well with single-beat E. This parameter has been validated invasively as an integrated and preload-insensitive global contractility measure.

The studies were analyzed separately for LVOT velocity profiles by 2 investigators (S.L.H. and T.J.K.) and for E-wave analysis via the PDF formalism by 3 investigators (S.Z., E.G., and S.J.K.) who were blinded to additional clinical data; S.L.H. performed standard echocardiographic structural and functional analyses. All analyses involving E and E were also performed using the standard estimation of end-systolic pressure (0.9×brachial artery systolic BP).

Statistical Analysis

Data were analyzed using STATA version 10.0 (STATACorp, College Station, TX). Because of the small size of the cohort, Wilcoxon matched-pairs signed-rank testing was used for pre–post comparisons, with P<0.05 considered statistically significant. Results are presented as the mean±SD, and for the primary measures of interest also include the mean and SD of pre–post differences.
Results

Patient Characteristics and Adherence

The characteristics of the 14 enrolled participants (of 22 screened) are shown in Table 1. All were diagnosed with HFPEF by board-certified cardiologists (in addition to the investigators), most were on loop diuretics, and most had been hospitalized previously for decompensated HFPEF. In addition to meeting study inclusion criteria, 13 of 14 subjects fulfilled 2007 European Society of Cardiology HFPEF diagnostic guidelines (7 by catheterization and 6 via neurohormonal and echocardiographic criteria).14

Thirteen patients completed the study; 1 was withdrawn because of serum potassium of 5.9 mg/dL at the safety visit. All subjects were adherent highly to the provided DASH/SDRD on review of 3-day food diaries (data not shown). A comparison between baseline food frequency questionnaire data and the DASH/SDRD menu (final 5 days) predicted a 56% reduction in sodium intake and a 37% increase in potassium intake. These predictions and study diet adherence were strongly corroborated by a 56% reduction in urinary sodium excretion (3353±1593 to 1707±37 g/24 h) and a 28% increase in urinary potassium excretion (2284±793 to 2925±1024 mg/24 h) from baseline.

Blood Pressure Changes

All clinic and ambulatory BP recordings were adequate for the analysis. In most subjects, baseline 24-hour monitoring demonstrated well-controlled BP consistent with current HFPEF guidelines (systolic BP <130 mm Hg).28 As previously demonstrated in this cohort, seated clinic and 24-hour systolic BP decreased (155±35 to 138±30 mm Hg) and 130±16 to 123±18 mm Hg; respectively) between baseline and post-DASH/SDRD measurements.13 The supine brachial BP measured immediately before the echocardiogram and Sphygmocor (142±25 to 134±22 mm Hg; P=0.07) and the central end-systolic BP (116±18 to 111±16 mm Hg; P=0.12) also trended lower after DASH/SDRD.

Cardiac and Vascular Measures

Standard echocardiographic data are summarized in Table 2. As in other hypertensive HFPEF cohorts,29 most patients had left atrial enlargement and left ventricular hypertrophy. Twelve subjects had adequate signals for lateral and 9 for septal tissue Doppler velocities. The DASH/SDRD was not associated with changes in the mitral inflow E/A ratio or mitral E′/e′ ratio.

All patients had mitral velocity profile image quality suitable for analysis via the PDF formalism for quantitative diastolic function assessment; the effects of the study diet are shown in Figure 1. The DASH/SDRD significantly reduced both the viscoelastic/relaxation (c=24.3±5.3 to 22.7±8.1 g/s; difference=−4.2±6.2 s⁻¹; P=0.03) and chamber stiffness (k=25.2±115 to 170±37 g/s²; difference=−81±99 s⁻¹; P=0.03) constants, meaning that left ventricular relaxation improved and diastolic chamber stiffness declined. The load index x, (directly proportional to E-wave velocity–time integral and reflecting early diastolic filling volume) did not change significantly (13.9±4.1 to 15.0±4.4 cm; P=0.35). However, the available energy for diastolic filling trended lower (1/2 kx^2; 26570±18050 to 20720±13053 ergs; difference=−5850±11711 ergs; P=0.10).

Twelve of 13 patients had adequate LVOT outflow tract velocity profiles for analysis of E, E′, V–A coupling, and dvo/dtrapezoid results are displayed in Figure 2. The DASH/SDRD was associated with reduced E (2.0±0.4 to 1.7±0.4 mm Hg/mL; difference=−0.3±0.3 mm Hg/mL; P=0.007); the E′ did not change significantly (2.9±0.4 to 2.8±0.5; difference=−0.2±0.5 mm Hg/mL; P=0.48), but V–A coupling improved (E/E′=1.5±0.3 to 1.7±0.4; difference=−0.2±0.3; P=.04).

Table 1. Baseline Demographics and Clinical Characteristics of Subjects

<table>
<thead>
<tr>
<th>Demographic/anthropometric data</th>
<th>Pre</th>
<th>Post</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>72±10</td>
<td>72±10</td>
<td>0.80</td>
</tr>
<tr>
<td>No. of women/men</td>
<td>13/1</td>
<td>13/1</td>
<td>0.08</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>94±30</td>
<td>94±30</td>
<td>0.10</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>35.5±7.9</td>
<td>35.5±7.9</td>
<td>0.80</td>
</tr>
<tr>
<td>Baseline clinical characteristics</td>
<td>n (%)</td>
<td>n (%)</td>
<td>0.07</td>
</tr>
<tr>
<td>B-type natriuretic peptide, pg/mL</td>
<td>142±33</td>
<td>142±33</td>
<td>0.10</td>
</tr>
<tr>
<td>Six-minute walk distance, m</td>
<td>313±86</td>
<td>313±86</td>
<td>0.77</td>
</tr>
<tr>
<td>Hypertension</td>
<td>14 (100%)</td>
<td>14 (100%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>5 (36%)</td>
<td>5 (36%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6 (43%)</td>
<td>6 (43%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>14 (100%)</td>
<td>14 (100%)</td>
<td>0.10</td>
</tr>
<tr>
<td>NYHA class II/III</td>
<td>2 (14%)/12 (86%)</td>
<td>2 (14%)/12 (86%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Prior heart failure hospitalization</td>
<td>10 (71%)</td>
<td>10 (71%)</td>
<td>0.10</td>
</tr>
<tr>
<td>On chronic loop diuretic therapy</td>
<td>11 (79%)</td>
<td>11 (79%)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural and functional data</th>
<th>Pre</th>
<th>Post</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV mass index, g/m²</td>
<td>86±28</td>
<td>85±27</td>
<td>0.80</td>
</tr>
<tr>
<td>Relative wall thickness</td>
<td>0.57±0.07</td>
<td>0.56±0.08</td>
<td>0.84</td>
</tr>
<tr>
<td>Left atrial diameter, mm</td>
<td>42±5</td>
<td>41±5</td>
<td>0.10</td>
</tr>
<tr>
<td>LV end-diastolic volume, mL</td>
<td>102±23</td>
<td>102±22</td>
<td>0.77</td>
</tr>
<tr>
<td>Stroke volume, mL</td>
<td>66±16</td>
<td>73±16</td>
<td>0.03</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>66±18</td>
<td>74±16</td>
<td>0.10</td>
</tr>
<tr>
<td>Cardiac output, L/min</td>
<td>4.1±1.0</td>
<td>4.3±1.2</td>
<td>0.19</td>
</tr>
<tr>
<td>Systemic vascular resistance, dynes-cm⁻²</td>
<td>2027±501</td>
<td>1817±439</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard diastolic function data</th>
<th>Pre</th>
<th>Post</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral E velocity, cm/s</td>
<td>92±29</td>
<td>84±20</td>
<td>0.20</td>
</tr>
<tr>
<td>Mitral A velocity, cm/s</td>
<td>79±14</td>
<td>83±17</td>
<td>0.25</td>
</tr>
<tr>
<td>Mitral E/A ratio</td>
<td>1.13±0.31</td>
<td>0.98±0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Septal e’ velocity, cm/s</td>
<td>9±2</td>
<td>8±2</td>
<td>0.56</td>
</tr>
<tr>
<td>Lateral e’ velocity, cm/s</td>
<td>10±1</td>
<td>10±2</td>
<td>0.85</td>
</tr>
<tr>
<td>Septal E′/e ratio</td>
<td>12±3</td>
<td>11±4</td>
<td>0.67</td>
</tr>
<tr>
<td>Lateral E′/e ratio</td>
<td>10±3</td>
<td>9±2</td>
<td>0.11</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CABG, coronary artery bypass grafting; eGFR, estimated glomerular filtration rate per modification of diet in renal disease; Hgb, hemoglobin; NYHA, New York Heart Association; and PCI, percutaneous coronary intervention.

* LV indicates left ventricle.
whereas global contractility increased (dσ*/dt_{max} (1.6±0.5 to 1.8±0.5 s^{-1}; difference=0.2±0.2 s^{-1}; P=0.01). Results for E_s, E_a, the E_s:E_a ratio, and dσ*/dt_{max} were nearly identical using 0.9×brachial systolic BP instead of Sphygmocor-measured central end-systolic pressure (not shown).

In conjunction with these changes, the ventricular stroke volume increased and systemic vascular resistance decreased after DASH/SRD. Although the heart rate (62±8 to 59±11 beats per minute; P=0.23) and cardiac output did not change significantly (Table 2), left ventricular mechanical energetic efficiency increased (76±4% to 78±4%; difference=2±3%; P=0.05). The increase in energy efficiency closely paralleled the changes in E_s:E_a ratio (Pearson correlation coefficient r=0.92; P<0.001).

Discussion

In this cohort of patients with hypertensive HFPEF, the DASH/SRD improved left ventricular diastolic function, reduced arterial elastance, and shifted V–A coupling to reflect more efficient transfer of blood between the heart and arteries.

During the past decade, HFPEF has become recognized as a multifactorial disorder of impaired cardiovascular reserve. Left ventricular diastolic dysfunction, the classic paradigm for HFPEF, is common and related to exertional intolerance both via intrinsic stiffness and impaired early diastolic relaxation. However, many other factors have also been implicated, such as chronotropic incompetence, endothelial dysfunction, and decreased ventricular systolic reserve. Of particular relevance in hypertensive HFPEF are combined increases in large arterial and end-systolic ventricular stiffness. These factors contribute to impaired diastolic relaxation and a higher cardiac energy cost to increase cardiac output.

Several clinical trials have reported improvements in ventricular diastolic function and reductions in E_s and E_a with pharmacological BP management, but the effects of dietary modification on ventricular–vascular function in HFPEF have not been established. Salt-sensitive animal models develop HFPEF through the shared mechanisms of dietary sodium-induced hypertension, oxidative stress, and perivascular inflammation. In humans, the demographic factors and comorbidities that predict BP salt sensitivity are similar to those of HFPEF, and sodium intake and other dietary characteristics may influence the risk of heart failure in obese and older adults. However, few studies have investigated links between dietary factors and HFPEF.

As revealed by the PDF formalism method, the DASH/SRD improved both viscoelastic/relaxation (c) and passive/stiffness (k) measures of ventricular diastolic function. The energy available for diastolic filling trended lower; because stroke volume was maintained, this finding suggests increased diastolic filling efficiency. We did not vary preload during echocardiographic measurements in this study. However, the lack of change in x_o after DASH/SRD supports the interpretation that preload alterations were not the primary reason for changes in diastolic function. The potential impact of ventricular afterload on diastolic function is often underappreciated. For example, during handgrip exercise in patients with HFPEF, afterload, systemic BP, and left ventricular end-diastolic pressure increase in tandem. In this study, we found no significant correlation between BP or E_a changes and PDF formalism diastolic function measures but cannot rule out secondary improvement of diastolic function because of reduced arterial afterload.

The significant decrease in E_a after DASH/SRD was related both to lower end-systolic pressure and to an increase...
in ventricular stroke volume. The E_a is a lumped afterload parameter dependent on heart rate, proximal arterial stiffness, and peripheral arterial resistance. In this cohort, the DASH/SRD improved both vascular function components without changing heart rate. Our results are consistent with previous studies in older hypertensive adults without heart failure, in which dietary sodium reduction rapidly improved endothelial function and arterial stiffness. In patients with hypertensive HFPEF, the E_e and E_a increase in parallel so that the V–A coupling ratio is preserved at rest. However, patients with HFPEF have reduced chamber and myocardial contractility when compared with age-matched hypertensives. Moderate cycle ergometer exercise reveals a disproportionate impact of proximal arterial stiffness during physical activity in patients with HFPEF. The resulting unfavorable V–A coupling, or afterload mismatch, in the setting of impaired ventricular contractile reserve may be an important factor limiting exercise duration in HFPEF.

After the DASH/SRD, the $E_e:E_a$ ratio significantly increased. This observation reflects improved V–A coupling, a conclusion supported by the closely correlated increases in left ventricular mechanical energetic efficiency. These results are similar to a recent pooled study of clinical trial participants with hypertension and ventricular diastolic dysfunction. In that analysis, valsartan±amlodipine increased the $E_e:E_a$ ratio and ventricular energetic efficiency. In our study, the dE_+/dt_{max} also increased, indicating a higher rate of systolic wall stress generation. Because this parameter is indexed for left ventricular mass and does not relate to intrinsic ventricular stiffness, our results suggest that the DASH/SRD was associated with increased global ventricular contractility. Although long-term antihypertensive medication treatment improves myocardial contractility, especially in the context of left ventricular mass regression, we cannot determine whether the DASH/SRD directly affected left ventricular systolic performance or whether the reduction in effective arterial afterload was responsible.

As in other HFPEF cohorts, our study participants were predominantly women and obese. Central obesity is one of the strongest predictors of aortic stiffness in large community cohorts. Proximal aortic stiffness is greater in women than men and is associated with ventricular diastolic dysfunction and altered V–A coupling. After antihypertensive medication treatment, women and obese subjects have less improvement in V–A coupling and ventricular systolic efficiency than men and nonobese subjects. Our short-term dietary intervention study cannot be compared directly with longer term drug studies, but it is intriguing that large arterial stiffness, global left ventricular contractility, and V–A coupling all significantly improved after DASH/SRD in this cohort of elderly, obese women.

Limitations

Our study group was small, but its characteristics closely resembled those in large HFPEF cohort studies; as such, the cohort had several factors that predict salt-sensitive hypertension (eg, advanced age, diabetes mellitus, obesity, renal insufficiency, postmenopausal state). Our findings are hypothesis generating and should not be generalized to all patients with...
HFPEF, particularly those with nonhypertensive pathogenesis or different demographics.

We do not have data from a formal control dietary period for comparison with DASH/SRD. However, urinary measures and survey assessments indicated excellent adherence to the study diet and significant alteration from baseline dietary patterns. Other recent studies of ventricular mechanics and V–A coupling in antihypertensive clinical trials also reported pre–post treatment changes without describing findings in the placebo group.6,8 Nevertheless, given the absence of a control group in this study, we cannot exclude the possibility that our findings are influenced by a placebo effect.

We did not observe changes in left ventricular diastolic function by standard methods, in particular the E/e' ratio. However, the PDF formalism method has been extensively invasively validated and provides several potential advantages over the E/e' ratio.20–23 A recent study challenged the E/e' ratio as a measure of diastolic function in the setting of normal left ventricular ejection fraction, finding poor correlation between E/e' and invasive pulmonary capillary wedge pressure measurements, and low discrimination for E/e' as a predictor of elevated wedge pressure.43 In contrast, the PDF approach accurately predicts elevated ventricular filling pressures in patients with normal ejection fraction and diastolic dysfunction.21–23 This technique is causality based (on the suction pump attribute of the left ventricle) and is unique in its ability to quantify diastolic function in terms of relaxation, stiffness, and load as determinants of transmitial flow.

The DASH/SRD significantly affected several of the key factors that contribute to symptoms in HFPEF. However, our study was performed at rest, and the findings cannot be extrapolated directly to physical activity. Future dietary modification studies in HFPEF should evaluate ventricular and vascular function interactions during exercise.

Conclusions

In patients with HFPEF with treated hypertension, the DASH/SRD was associated with improvements in left ventricular diastolic function, global contractility, arterial elastance, and V–A coupling. These findings support further dietary modification studies to clarify links between the salt-sensitive phenotype and hypertensive HFPEF.

Acknowledgements

We acknowledge Joanna Wells, BS; Theresa Han-Markey, MS, RD; Debra Peterman, BS, RD; Laura Foess-Wood, BS; Cynthia Boersma, BS; Martha Hartdegen, BS; Elizabeth Meurer, MS, RD; and the staff at the Michigan Clinical Research Unit for their invaluable assistance.

Sources of Funding

The work at the University of Michigan was supported by the National Institutes of Health (K23HL109176 to Dr Hummel and UL1TR000433 to the University of Michigan) and the Innovations in Cardiovascular Medicine Award from the University of Michigan Cardiovascular Center. The work at Washington University in St. Louis was supported, in part, by the Alan A. and Edith L. Wolff Charitable Trust (St. Louis, MO) and the Barnes-Jewish Hospital Foundation. E. Ghosh is the recipient of a Heartland Affiliate predoctoral fellowship award (11PRE4930009) from the American Heart Association. S. Zhu is a recipient of an Honorary Scholars Summer Research Grant from Washington University in St. Louis. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Disclosures

None.

References

13. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, Wells JM, Weder AB. Low-sodium dietary approaches to stop hyperten-
sion diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction/nov-
Heart failure with preserved ejection fraction (HFPEF) is associated with failure of cardiovascular reserve in multiple domains, including ventricular diastolic function and ventricular–vascular coupling. Several salt-sensitive animal models develop hypertension and HFPEF during high sodium intake. In salt-sensitive humans without heart failure, the sodium-restricted dietary approaches to stop hypertension (DASH/SRD) eating pattern reduces blood pressure and improves vascular function. Observational cohorts suggest that a similar phenotype exists in human HFPEF, but the effects of dietary modification on cardiovascular function in patients with HFPEF are largely unknown. In a proof-of-concept pilot study, 13 patients with stable hypertension HFPEF consumed the DASH/SRD (50 mmol sodium/2100 kcal target) for 21 days. We previously demonstrated reductions in ambulatory blood pressure and oxidative stress in this cohort and hypothesized that the DASH/SRD would also improve diastolic function and ventricular–vascular coupling. Diastolic function was assessed using the parametrized diastolic formalism that uses mitral inflow profiles to quantify diastolic function in terms of relaxation (c) and stiffness (k) constants. Arterial elastance (E_a), ventricular end-systolic elastance (E_*'), and the ventricular–arterial coupling ratio (E_*/E_a) were determined using previously published methods. The DASH/SRD was associated with significant reductions in c and k, indicating improved diastolic function, as well as E_*, signifying reduced ventricular afterload. Ventricular–vascular coupling also improved, as evidenced by increases in the E_*/E_a ratio, the maximum rate of change of pressure-normalized stress and the left ventricular mechanical energetic efficiency. These preliminary findings support further dietary modification studies to clarify links between the salt-sensitive phenotype and hypertensive HFPEF.

CLINICAL PERSPECTIVE

Heart failure with preserved ejection fraction (HFPEF) is associated with failure of cardiovascular reserve in multiple domains, including ventricular diastolic function and ventricular–vascular coupling. Several salt-sensitive animal models develop hypertension and HFPEF during high sodium intake. In salt-sensitive humans without heart failure, the sodium-restricted dietary approaches to stop hypertension (DASH/SRD) eating pattern reduces blood pressure and improves vascular function. Observational cohorts suggest that a similar phenotype exists in human HFPEF, but the effects of dietary modification on cardiovascular function in patients with HFPEF are largely unknown. In a proof-of-concept pilot study, 13 patients with stable hypertension HFPEF consumed the DASH/SRD (50 mmol sodium/2100 kcal target) for 21 days. We previously demonstrated reductions in ambulatory blood pressure and oxidative stress in this cohort and hypothesized that the DASH/SRD would also improve diastolic function and ventricular–vascular coupling. Diastolic function was assessed using the parametrized diastolic formalism that uses mitral inflow profiles to quantify diastolic function in terms of relaxation (c) and stiffness (k) constants. Arterial elastance (E_a), ventricular end-systolic elastance (E_*'), and the ventricular–arterial coupling ratio (E_*/E_a) were determined using previously published methods. The DASH/SRD was associated with significant reductions in c and k, indicating improved diastolic function, as well as E_*, signifying reduced ventricular afterload. Ventricular–vascular coupling also improved, as evidenced by increases in the E_*/E_a ratio, the maximum rate of change of pressure-normalized stress and the left ventricular mechanical energetic efficiency. These preliminary findings support further dietary modification studies to clarify links between the salt-sensitive phenotype and hypertensive HFPEF.
Low-Sodium DASH Diet Improves Diastolic Function and Ventricular–Arterial Coupling in Hypertensive Heart Failure With Preserved Ejection Fraction
Scott L. Hummel, E. Mitchell Seymour, Robert D. Brook, Samar S. Sheth, Erina Ghosh, Simeng Zhu, Alan B. Weder, Sándor J. Kovács and Theodore J. Kolias

Circ Heart Fail. 2013;6:1165-1171; originally published online August 28, 2013;
doi: 10.1161/CIRCHEARTFAILURE.113.000481
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/6/6/1165

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/