Response to Letter Regarding Article, “Effects of Sildenafil on Ventricular and Vascular Function in Heart Failure With Preserved Ejection Fraction”

We appreciate the comments from Brutsaert and De Keulenaer1 on our recent publication on the ventricular and vascular effects of sildenafil in people with heart failure with preserved ejection fraction enrolled in the Phosphodiesterase-5 Inhibition to Improve Clinical Status and Exercise Capacity in Diastolic Heart Failure (RELAX) trial.2,3 The authors suggest that different results might have been observed had heart failure with preserved ejection fraction subjects been subgrouped according to characteristics, such as age, sex, body composition, and comorbidities. We agree that this concept has merit, but many or most of these characteristics coexist within the typical heart failure with preserved ejection fraction patient, and although the comorbid conditions influence cardiovascular properties, fundamental disease-specific changes have been shown to underlie heart failure with preserved ejection fraction, irrespective of comorbidities.4

Brutsaert and De Keulenaer1 make the point that changes in arterial afterload can affect ventricular function, going on to suggest that reduction in arterial wave reflections might have affected the timing of relaxation to cause or contribute to the observed decrease in peak ventricular pump performance. This is an intellectually appealing theory, but our data do not support it. There was no effect of sildenafil on wave reflections, assessed by aortic augmentation index, and there was no effect of sildenafil on left ventricular relaxation, at least as estimated by left ventricular diastolic tissue velocities.2 Therefore, we are not convinced that changes in loading sequence completely explain the findings in our study.

The authors further suggest that a lower sildenafil dose might have been more effective. This was not observed at the 20-mg dosage,2 although lower doses were not examined in the RELAX trial.1 Stroke work and peak power are both independent of afterload but vary directly with preload (end diastolic volume).5 Because both were divided by end-diastolic volume, these indices can be considered as measures of ventricular contractility,6 but we agree with Brutsaert and De Keulenaer1 that chamber contractility is distinct from myocardial contractility.6

Disclosures

None.

References


Response to Letter Regarding Article, "Effects of Sildenafil on Ventricular and Vascular Function in Heart Failure With Preserved Ejection Fraction"
Barry A. Borlaug, Horng Chen, Grace Lin, Margaret M. Redfield, Gregory D. Lewis, Marc J. Semigran, Steven E. McNulty, Martin LeWinter, Anita Deswal and Kenneth B. Margulies

Circ Heart Fail. 2015;8:840
doi: 10.1161/CIRCHEARTFAILURE.115.002372

Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/8/4/840

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/