Letter by Teerlink et al Regarding Article, “Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity”

We reviewed the article, “Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity.” With interest because its conclusions differ from those in our work published in this same journal and elsewhere. We commend the authors for pursuing an important question related to an investigational drug being studied in patients with systolic heart failure. However, we believe deficiencies in their experimental approach undermine their conclusions.

First, despite the title of the article, there was no statistically significant difference in directly measured myocardial oxygen consumption preceding and following omecamtiv mecarbil administration (Table 2 in Bakkehaug et al). In contrast to the prior work in a conscious dog model of heart failure, the authors studied animals under acute anesthesia in which 30% of the animals had to be excluded because of hemorrhagic collapse. A critical placebo-control group to determine effects of change in hemodynamic status over time was not performed. Without such a control, one cannot disentangle the effect of time from the effect of the drug.

Second, to assess the pressure–volume–area oxygen consumption relationship, the investigators reduced preload in a graded manner; in doing so, the investigators seemed to reduce cardiac stroke work to near zero. It is difficult to understand how this was achieved, and why this maneuver, performed twice during the experimental protocol, would not itself alter energetics. It would seem difficult to sustain such marked preload (and thus stroke work) reduction for any time at all without substantial sympathetic activation or inducing ischemic damage. Even before performance of these maneuvers in the healthy animals, increases in both heart rate and dP/dt occurred in the first 20 minutes before omecamtiv mecarbil administration. In fact, dP/dt continued to rise during drug administration, something not observed in prior studies. The authors attributed this to the drug, but without a placebo control, this conclusion cannot be made.

Third, the conclusion that omecamtiv mecarbil increases resting myosin ATPase is contradictory to the finding that omecamtiv mecarbil inhibits the nonactin-dependent myosin ATPase in purified systems. The authors instead used whole hearts subjected to cardioplegia in which the activation state of the sarcomere is not well defined, and calcium concentrations in the myocyte are unstable. Even modest changes in basal calcium will result in sarcomere activation by omecamtiv mecarbil, rendering measurements of a basal state inaccurate and uninterpretable.

Finally, the authors used a dose of omecamtiv mecarbil that is 3-fold higher than the highest doses studied in humans. Assuming infusions were administered correctly (dose reported is in mg/kg/min in abstract and mg/kg/h in methods), the selected dose (0.92 mg/kg/20 minutes) was nearly 3-fold higher than that used in conscious dogs (0.33 mg/kg/20 minutes) and the maximum dose rate studied in humans (=0.33 mg/kg/20 minutes). Currently, considerably lower doses are being pursued in the ongoing clinical development program. Because plasma concentrations of omecamtiv mecarbil were not measured, the relevance of the dose studied to the doses now being used in humans cannot be assessed.

Based on these concerns, we think this study, with its design limitations and absence of necessary controls, could not adequately address the important hypotheses proposed by the authors and thus does not support their main conclusions.

Disclosures

Dr. Teerlink has received research grants and consulting fees from Abbott, Actelion, Amgen, Bayer, Cardioxyl, Cytokinetics, Novartis, Theravance, and Trevena. Dr. Malik is an employee and stockholder of Cytokinetics, Inc. Dr. Kass has received research grants and consulting fees from Amgen and Cytokinetics.

John R. Teerlink, MD
San Francisco Veterans Affairs Medical Center and University of California San Francisco
San Francisco, CA

Fady I. Malik, MD, PhD
Cytokinetics, Inc
San Francisco, CA

David A. Kass, MD
The Johns Hopkins University Medical Institutions
Baltimore, MD

References

Letter by Teerlink et al Regarding Article, "Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity"
John R. Teerlink, Fady I. Malik and David A. Kass

Circ Heart Fail. 2015;8:1141
doi: 10.1161/CIRCHEARTFAILURE.115.002492
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/8/6/1141

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/