Prediction of All-Cause Mortality Based on the Direct Measurement of Intrathoracic Impedance

Michael R. Zile, MD; Vinod Sharma, PhD; James W. Johnson, MS; Eduardo N. Warman, PhD; Catalin F. Baicu, PhD; Tom D. Bennett, PhD

Background—Intrathoracic impedance-derived OptiVol fluid index calculated using implanted devices has been shown to predict mortality; direct measurements of impedance have not been examined. We hypothesized that baseline measured impedance predicts all-cause mortality; changes in measured impedance result in a change in the predicted mortality; and the prognostic value of measured impedance is additive to the calculated OptiVol fluid index.

Methods and Results—A retrospective analysis of 146,238 patients within the Medtronic CareLink database with implanted devices was performed. Baseline measured impedance was determined using daily values averaged from month 6 to 9 after implant and were used to divide patients into tertiles: group L=low impedance, ≤65 ohms; group M=medium impedance, 66 to 72 ohms; group H=high impedance, ≥73 ohms. Change in measured impedance was determined from values averaged from month 9 to 12 post implant compared with the 6- to 9-month values. OptiVol fluid index was calculated using published methods. All-cause mortality was assessed beginning 9 months post implant; changes in mortality was assessed beginning 12 months post implant. Baseline measured impedance predicted all-cause mortality; 5-year mortality for group L was 41%, M was 29%, and H was 25%, P<0.001 among all groups. Changes in measured impedance resulted in a change in the predicted mortality; the prognostic value of measured impedance was additive to the OptiVol fluid index.

Conclusions—Direct measurements of intrathoracic impedance using an implanted device can be used to stratify patients at varying mortality risk. (Circ Heart Fail. 2016;9:e002543. DOI: 10.1161/CIRCHEARTFAILURE.115.002543.)

Key Words: all-cause mortality ■ heart failure ■ impedance ■ risk

Changes in intrathoracic impedance-derived fluid indices measured using implanted devices has been shown to predict heart failure hospitalizations and all-cause mortality in patients with heart failure and a reduced ejection fraction (HFrEF).1–18 In these previous studies, an impedance-derived fluid index (hereafter called OptiVol fluid index) was obtained using a cumulative sum mathematical model that calculates the differences between impedance measured in ohms (hereafter called directly measured impedance) and a reference impedance; the OptiVol fluid index was expressed in ohm days. It was demonstrated that when the OptiVol fluid index value exceeded 60 ohm days, the crossing of this threshold value predicted both increased morbidity and mortality.2–7

OptiVol fluid index. Changes in measured impedance values vary for several weeks before they reach a reproducible equilibrium. These and other factors were thought to limit the clinical value and reproducibility of measured impedance.

However, the independent prognostic value of measured impedance has not previously been thoroughly evaluated, particularly with respect to predicting all-cause mortality. Measured impedance has several advantages. It is a simple and direct measurement. It may have value independent of or additive to the OptiVol fluid index. Changes in measured impedance values over defined time periods may signal a change in prognosis.

See Editorial by Small and Tang
See Clinical Perspective

Accordingly, data within the Medtronic CareLink database from more than 146,000 patients were examined to test the hypotheses that measured intrathoracic impedance has independent prognostic value. Specifically, it was hypothesized that baseline measured impedance predicts all-cause mortality; changes in measured impedance result in a change in the predicted mortality; and the prognostic value of measured impedance is additive to and independent of the OptiVol fluid index.
Methods

Study Patients

The Medtronic CareLink Discovery Link was established as a de-identified repository of longitudinal data retrieved via a remote monitoring network of implantable cardiac defibrillator (ICD) or cardiac resynchronization device with an ICD (CRT-D) manufactured by Medtronic, Plc. Centers using CareLink entered into a data use agreement that allows for the use of data for research purposes in accordance with regulations stipulated in the Health Insurance Portability and Accountability Act. However, demographic description of these patients was limited. For example, left ventricular structure and function characteristics were not included in the CareLink database. Therefore, certain implications concerning the application of the results of this study to specific patient populations can only be inferred.

For example, it is inferred that >95% of the patients in this study had HFrEF based on 2 issues. First, only patients with HFrEF are qualified to receive a CRT or CRT-D. Second, previous studies have demonstrated that <10% of ICD patients have heart failure with a preserved ejection fraction placed for secondary prevention. Thus, in aggregate, >95% of the subjects studied were likely to have HFrEF.

In this study, a retrospective analysis of patients with devices implanted in the United States from December 2004 through August 2012 was conducted. From the total number of CareLink patients implanted with either ICD or CRT-D devices during this time frame (n=388,385), those patients implanted with devices without the capability of measuring intrathoracic impedance (n=117,498) were excluded (Figure 1). Also, patients with significant missing impedance data because of infrequent CareLink data transmissions (n=122,189) were also excluded. Furthermore, because analysis was based on the behavior of the intrathoracic impedance during the first 9 months, patients who died within this period were excluded (n=2,460). These criteria were set a priori, driven solely by requirements for the analysis. After exclusions, 146,238 patients were included in the analysis.

Intrathoracic Impedance Measurements

All ICD and CRT-D devices measured intrathoracic impedance using the right ventricle coil to can vector. Four impedance measurements were taken every 20 minutes from the period of noon to 5 pm, and the resulting 64 measurements were averaged to obtain daily measured impedance. Impedance measurements were available starting one day postimplant and on all days through the last transmission date. At least 9 months elapsed between the implant date and last transmission date. Baseline measured impedance was determined using daily impedance values averaged from 6 to 9 months post implant. The first 6 months of impedance data were excluded because intrathoracic impedance measured by the device is known to slowly change over this time as the device pocket matures.

Two analyses were performed (Figure 2A and 2B). In the primary analysis, survival was evaluated from 9 months forward (Figure 2A). Mortality data were obtained from the Medtronic Device Registry and cross-referenced with the Social Security Death Index ≤31 May 2013. Patients were divided into 3 groups based on 33rd and 66th percentile values for the distribution of the baseline impedance values as follows:

1. Group H: High Impedance: ≥73 ohms (highest observed impedance: 170 ohms)
2. Group M: Medium impedance: 66 to 72 ohms
3. Group L: Low impedance: ≤65 ohms (lowest observed impedance: 27 ohms)

Furthermore, whether measured impedance provides incremental value to prediction of all-cause mortality independent of threshold crossing was examined. Threshold crossing was defined as a reduction in intrathoracic impedance leading to a rise in the derived OptiVol fluid index above the nominal threshold of 60 ohm days during 6 to 9 months after implant.

In the secondary analysis, whether changes in average impedance over the next 3 months (ie, 9–12 months after implant) in each of 3 groups were associated with varying mortality were examined (Figure 2B). For this secondary analysis, patients in group L (based

Patient disposition for primary and secondary analysis.

Figure 1. Patient sample size disposition for primary and secondary survival analysis. CRT-D indicates cardiac resynchronization with an cardiac defibrillator; and ICD, implantable cardiac defibrillator.
on baseline impedance) who had no change in measured impedance over 9 to 12 months (ie, the measured impedance remained \(\leq 65 \) ohms) were called group LL (ie, started in group L, stayed in group L). Likewise, patients in group L (based on baseline impedance) who had an increase in measured impedance over 9 to 12 months to values 66 to 72 ohms were called group LM (started in group L, changed to group M); and patients in group L (based on baseline impedance) who had an increase in measured impedance over 9 to 12 months to values \(\geq 73 \) ohms were called group LH (started in group L, changed to group H). A similar labeling scheme was used for patients in groups M and H using their initial 6 to 9 month impedance values first followed by their subsequent 9- to 12-month values.

Data Analysis

The F-test for continuous variables (mean±SD) and \(\chi^2 \) test for categorical variables were used to examine the differences in baseline characteristics among groups. Kaplan–Meier survival analysis and Cox proportional hazards regression were used for time-to-event analysis, with the starting date of follow-up after the observation period (9 months after implantation for the primary analysis and 12 months after implantation for the secondary analysis). Hazard ratios (HR) and 95% confidence intervals for all-cause mortality were adjusted for age, sex, and device type. All analyses were performed using statistical software from SAS, Inc (Version 9, Cary, NC).

Results

Patient Demographics

For the entire cohort of 146,238 patients, the mean±SD age was 67±12 years, 75% were male, 15% had a single chamber ICD, 40% had dual chamber ICD, and 45% had CRT-D. The mean±SD follow-up was 29±19 months. When this cohort was divided into tertiles, there were significant differences between the 3 groups in all of these baseline demographic data (Table 1). For example, patients in group L (measured impedance \(\leq 65 \) ohms) were older, more often had a CRT-D, and more frequently were female than patients in groups M (measured impedance 66–72 ohms) and H (measured impedance \(\geq 73 \) ohms). These baseline demographic differences were expected because of the large sample size studied; however, each of these baseline factors was adjusted for the Cox regression analyses described below.

Measured Impedance Versus Survival (Primary Analysis)

The Kaplan–Meier estimate of all-cause mortality in group L patients was 41% at 5 years of follow-up; this was significantly higher than the 29% mortality in group M and 25% mortality in group H patients; all pair-wise comparisons were significant at \(P < 0.001 \) (Figure 3). When adjusted for age, sex, and type of device, the HR for group L versus M was 1.38 (95% confidence intervals: 1.33, 1.42) and HR for group L versus H was 1.39 (95% confidence intervals: 1.34, 1.44). Both HRs were statistically significant with \(P < 0.001 \) (Table 2).

Table 1. Demographic Data for 3 Impedance Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean Measured Impedance Between 6 and 9 mo</th>
<th>(P) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group L, 27–65 Ω (n=48,709)</td>
<td>70±12</td>
<td></td>
</tr>
<tr>
<td>Group M, 66–72 Ω (n=46,953)</td>
<td>68±11</td>
<td></td>
</tr>
<tr>
<td>Group H, 73–170 Ω (n=50,596)</td>
<td>65±11</td>
<td></td>
</tr>
</tbody>
</table>

Group L indicates patients with baseline measured impedance \(\leq 65 \) ohms; group M, patients with baseline measured impedance 66–72 ohms; and group H, patients with baseline measured impedance \(\geq 73 \) ohms. CRT-D indicates cardiac resynchronization with a cardiac defibrillator; ICD-VR, single chamber intracardiac defibrillator; ICD-DR, dual chamber intracardiac defibrillator; and \(\Omega \), Impedance in ohms.
for group M versus H was 1.01 (95% confidence intervals: 0.98, 1.04), which was not significant ($P=0.588$).

The observation period over which the baseline direct measurement of impedance was obtained was 3 months from months 6 to 9 post implant. In addition, as an exploratory analysis, shorter observation periods were examined to determine whether observation periods of 1 month, 1 week, and 1 day would also be sufficient to predict mortality (Table 3). This exploratory analysis was done only for the primary analysis and only after adjustment for age, sex, and type of device (all tables except Table 3 and all graphs use 3-month time periods because they were the most robust and easily presented). This analysis of mortality started the day after the end of the period for calculating average impedance. For example, the 1 day average is the impedance value at day 183 post implant; mortality analysis started at day 184 post implant. Similarly, the 1 week average is the average impedance from day 183 to day 189 post implant; mortality analysis started at day 190 post implant. For all observation periods, 3 months, 1 month, 1 week, and 1 day, baseline measured impedance predicted mortality. Using each observation period, group L patients had a higher mortality than group M and H patients ($P<0.001$ for all pairwise comparisons).

Incremental Value of Measured Impedance to OptiVol Threshold Crossings

The predictive discrimination for all-cause mortality provided by the baseline (6–9 months) measured impedance in the primary analysis was present in both patients who did not have an OptiVol fluid index threshold crossing during 6 to 9 months after implantation (Figure 4A) and those that did (Figure 4B). The 5-year mortality for group L patients with threshold crossings (48%) was higher than those without (33%; $P<0.001$). Within groups with or without threshold crossings, patients in groups M and H had lower mortality rates than group L patients ($P<0.001$ for all pairwise comparisons).

Change in Measured Impedance Versus Survival (Secondary Analysis)

In group H, when there was a decrease in measured impedance during the 9 to 12 months after implantation period, the subsequent mortality rate increased; this difference in mortality reached statistical significance in groups HM and HL (Table 4 and Figure 5A). These changes resulted in significant increase in HRs even after adjustment for covariates of age, sex, device type for groups HL versus HM (HR 1.63 [1.12, 2.37]), HL versus HH (HR 2.61 [1.81, 3.75]), and HM versus HH (HR 1.60 [1.47, 1.73]), all with statistically significant P values.

In group M, when there was an increase in measured impedance during the 9 to 12 months after implantation period, the subsequent mortality rate decreased; this difference in mortality reached statistical significance in group MH (Table 4 and Figure 5B). When there was a decrease in measured impedance during the 9 to 12 months after implantation period, the subsequent mortality rate increased; this difference in mortality reached statistical significance in group ML. These changes resulted in significant increase in HRs even

Table 2. Hazard Ratios for All-Cause Mortality Predicted by Baseline Measured Impedance

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted (HR, 95% CI)</th>
<th>Adjusted* (HR, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group L vs Group M</td>
<td>1.54 (1.50, 1.60)</td>
<td>1.38 (1.33, 1.42)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
</tr>
<tr>
<td>Group L vs Group H</td>
<td>1.83 (1.77, 1.89)</td>
<td>1.39 (1.34, 1.44)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
</tr>
<tr>
<td>Group M vs Group H</td>
<td>1.18 (1.14, 1.22)</td>
<td>1.01 (0.98, 1.04)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P=0.588$</td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, and device type.

Table 3. Adjusted* Hazard Ratios for All-Cause Mortality Predicted by Impedance Measured Over Variable Time Periods

<table>
<thead>
<tr>
<th></th>
<th>Group L vs M</th>
<th>Group L vs H</th>
<th>Group M vs H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mo average</td>
<td>1.38 (1.33, 1.42)</td>
<td>1.39 (1.34, 1.44)</td>
<td>1.01 (0.98, 1.04)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P=0.588$</td>
</tr>
<tr>
<td>1 mo average</td>
<td>1.36 (1.32, 1.41)</td>
<td>1.36 (1.32, 1.41)</td>
<td>1.00 (0.97, 1.03)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P=0.959$</td>
</tr>
<tr>
<td>1 wk average</td>
<td>1.36 (1.31, 1.40)</td>
<td>1.36 (1.32, 1.41)</td>
<td>1.00 (0.97, 1.04)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P=0.853$</td>
</tr>
<tr>
<td>1 day average</td>
<td>1.37 (1.33, 1.42)</td>
<td>1.37 (1.32, 1.41)</td>
<td>1.00 (0.96, 1.03)</td>
</tr>
<tr>
<td></td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td>$P=0.874$</td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, and device type.
after adjustment for covariates of age, sex, device type for
groups ML versus MM (HR 2.04 [1.89, 2.20]), ML versus
MH (HR 1.80 [1.64, 1.99]), and MM versus MH (HR 0.88
[0.82, 0.95]), each comparison $P<0.001$. Note that mortality
curves in Figure 5B do not show difference between MM and
MH because they illustrate unadjusted data.

In group L, when there was an increase in measured
impedance during the 9 to 12 months after implantation period

Table 4. All-Cause Mortality Predicted by Change From Baseline Measured Impedance

<table>
<thead>
<tr>
<th>Group</th>
<th>6–9 mo</th>
<th>9–12 mo</th>
<th>Comparison</th>
<th>Unadjusted (HR, 95% CI)</th>
<th>Adjusted (HR, 95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group L</td>
<td>Group LL vs LM</td>
<td>1.27 (1.19, 1.36)</td>
<td>1.21 (1.13, 1.29)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
</tr>
<tr>
<td>(n=40989 vs 5918)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group LL vs LH</td>
<td>0.66 (0.47, 0.94)</td>
<td>0.62 (0.44, 0.88)</td>
<td>$P=0.020$</td>
<td>$P=0.007$</td>
<td></td>
</tr>
<tr>
<td>(n=40989 vs 118)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group LM vs LH</td>
<td>0.52 (0.37, 0.74)</td>
<td>0.52 (0.36, 0.73)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td></td>
</tr>
<tr>
<td>(n=5918 vs 118)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group M</td>
<td>Group ML vs MM</td>
<td>2.18 (2.02, 2.35)</td>
<td>2.04 (1.89, 2.20)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
</tr>
<tr>
<td>(n=3395 vs 35725)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group ML vs MH</td>
<td>2.07 (1.88, 2.27)</td>
<td>1.80 (1.64, 1.99)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td></td>
</tr>
<tr>
<td>(n=3395 vs 6477)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group MM vs MH</td>
<td>0.95 (0.88, 1.02)</td>
<td>0.88 (0.82, 0.95)</td>
<td>$P=0.136$</td>
<td>$P<0.001$</td>
<td></td>
</tr>
<tr>
<td>(n=35725 vs 6477)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group H</td>
<td>Group HL vs HM</td>
<td>1.44 (1.00, 2.09)</td>
<td>1.63 (1.12, 2.37)</td>
<td>$P=0.053$</td>
<td>$P=0.010$</td>
</tr>
<tr>
<td>(n=123 vs 3289)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group HL vs HH</td>
<td>2.66 (1.85, 3.83)</td>
<td>2.61 (1.81, 3.75)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td></td>
</tr>
<tr>
<td>(n=123 vs 45985)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group HM vs HH</td>
<td>1.84 (1.70, 1.99)</td>
<td>1.60 (1.47, 1.73)</td>
<td>$P<0.001$</td>
<td>$P<0.001$</td>
<td></td>
</tr>
<tr>
<td>(n=3289 vs 45985)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For group definitions see Methods section. CI indicates confidence interval; and HR, hazard ratio.

*Adjusted for age, gender, and device type.
to a level of medium (Figure 5C), the subsequent mortality rate decreased; this difference in mortality reached statistical significance (Table 4). These changes resulted in significant increase in HRs even after adjustment for covariates of age, sex, device type for groups LL versus LM (HR 1.21 [1.13, 1.29]). However, when there was a further increase in measured impedance from baseline level L to level H during 9 to 12 months, mortality rate 12 months post implant increased; for LM versus LH, HR 0.52 (0.36, 0.73), both P<0.001.

Discussion

Despite significant advances in guideline-directed therapeutic strategies, including β-blockade, renin–angiotensin–aldosterone antagonism, cardiac resynchronization therapy, and ICDs, patients with HFrEF have a 5-year mortality that approaches 50%, frequent hospitalizations for HF, and profound disability.19,20 The ability to accurately identify patients at a high, intermediate, or low risk of morbidity and mortality and the ability to accurately identify a change in that risk profile has important management implications. Data from this study suggest that intrathoracic impedance, measured using an implantable device, provides data that can be used to risk-stratify patients with ICDs or CRT-D devices. Specifically, directly measured baseline impedance predicts all-cause mortality, with patients having lower baseline impedance having higher mortality. The prognostic value of measured impedance is additive to and independent of the OptiVol fluid index. With one exception (see limitations below), changes in directly measured impedance over time resulted in a change in the predicted mortality.

The patient population for whom these findings should have significant application was carefully considered. Because demographic description of the patients described in this study was limited, the implications concerning the application of these results to specific patient populations can only
be inferred. However, it is estimated that >95% of the patients in this study had HFrEF; patients with a CRT or CRT-D had HFrEF; previous studies have demonstrated that <10% of ICD patients have heart failure with a preserved ejection fraction. Published studies report that only a small portion of ICDs (<20%) are for secondary prevention, and only a subset of these secondary prevention patients (≤30%) have heart failure with a preserved ejection fraction. Thus, the current study results apply primarily to HFrEF patients, recognizing that only a small portion of the current data (<5%) may be from heart failure with a preserved ejection fraction patients. Thus, in aggregate, because >95% of the subjects studied were likely to have HFrEF, the conclusions stated above have important implications to predicting mortality and changes in mortality using directly measured impedance in patients with HFrEF.

Previous studies demonstrated that the presence of an OptiVol fluid index crossing was associated with increased mortality. In fact, patients with ≥1 crossings during the first 6 months after implant were shown to be at 2.15× higher risk of a mortal event than patients with no OptiVol crossings. The current study demonstrated that the addition of directly measured impedance to the presence or absence of an OptiVol fluid index crossing improved predictive accuracy for mortal events. Although the OptiVol fluid index method used data from the first 6 months after device implantation, in the current study, data from the first 6 months after implant were excluded; directly measured intrathoracic impedance tends to gradually increase over this period. Thereafter, observation periods of 3 months duration were used to measure baseline impedance or change from baseline. However, observation periods <3 months were also shown to have utility using the directly measured impedance or change in measured impedance. In fact, data presented in this study suggest that directly measured impedance values assessed over time periods as short as 1 day yield similar mortality risk stratification as those reported in the current study using 3-month observation periods. Thus, once stable values of directly measured impedance are obtained after device implant, unlike OptiVol fluid index measurements which require extended observation durations to detect the presence of an OptiVol fluid index crossing, directly measured impedance data can provide data regarding changes in mortality (and potentially morbidity) over time periods that have important clinical value and reflect relatively rapidly changing status.

Contrast to Other Prognostic Models

There are several methods that have been shown to have value in predicting morbidity and mortality in HFrEF patients. These include models based on clinical and demographic factors (such as the Seattle heart failure and Meta-analysis Global Group in Chronic Heart Failure [MAGGIC] models), cardiac structure and function (such as LV remodeling patterns), biomarkers (such as natriuretic peptides), and direct hemodynamic measurements (such as catheterization measurements). None of these can be done remotely and continuously, and each requires complex and sophisticated methods to assess. Implantable hemodynamic monitoring has been shown to predict morbidity but not mortality based on use of chronic pulmonary artery pressure estimates of fluid status. The Champion trial showed a trend toward, but no significant reduction in, mortality in the treatment group compared with the control group. Because of the limitations in the current study design, the use of impedance to predict mortality has not been directly compared with these other techniques to determine its independent value. However, some indirect comparisons may be applicable. A recent study showed that the OptiVol fluid index adds incremental value to established models that predict patient mortality. Specifically, OptiVol further stratified mortality risk in patients with medium to high risk based on the MAGGIC model. Given that OptiVol is derived from measured impedance and hence inherently measures similar physiological parameters, it is likely that directly measured impedance too may add incremental value to clinical factors in predicting mortality risk. A large data set of device patients with relevant clinical factors and mortality events would be needed to examine this hypothesis. Measured impedance has been compared with acute changes in pulmonary capillary wedge pressure. Both pulmonary capillary wedge pressure and N-terminal B type natriuretic peptide have been shown to be inversely correlated with impedance (ie, as pulmonary capillary wedge pressure and N-terminal B type natriuretic peptide increase, impedance decreases).

Study Limitations

Despite a large and unbiased view of the device-derived data from a remote monitoring portal, there was limited clinical information concerning covariates that were readily available to enhance our understanding of the underlying mechanisms leading to (or confounding) the current data analyses. Because of deidentification of the data set, there was no information regarding comorbidities, medication changes, whether changes in measured impedance or OptiVol fluid index threshold crossings led to subsequent HF hospitalizations, or therapeutic interventions. The exact cause of death for individual patients was not available, nor a variety of clinical covariates that may influence the prognostic value of measured impedance or OptiVol fluid index data were available. The exclusion from the primary analysis of patients who died during the first 6 months of follow-up, as well as the exclusion from the long-term analysis of patients who died during the first 12 months of follow-up, introduces a survival bias in these analyses. There were likely many clinical factors (both cardiac and noncardiac) that may have influenced the relatively high mortality rates of patients with implanted devices. It is possible that there were confounding factors that could have been unevenly distributed between the L, M, and H impedance patient groups that could not be fully adjusted. These factors may also explain why one of the 9 secondary analyses resulted in a higher predicted mortality than expected, when impedance was low and then became high. Given these limitations, the current study should be viewed as hypothesis-generating rather than a definitive assessment of the potential utility of impedance monitoring.

Clinical Implications

The direct measurement of impedance has several aspects that make it clinically advantageous. It is simple and requires no mathematical modeling. It provides capability for use as a remote and continuous assessment of volume state. It is a measurement that can be made using a permanently implantable device.
One advantage of measured impedance, specifically over a derived index such as OptiVol, is that a zone of normal measured impedance can be established. A deviation from this normal measured impedance range may signify elevated risk; specifically, a decrease in impedance may suggest volume overload. This is similar to a normal PA pressure range within which a patient can then be managed. Furthermore, an OptiVol fluid index can be insensitive to situations in which the patient is chronically volume overloaded or the volume accumulation occurs very slowly (ie, under conditions in which the reference impedance also changes effectively preventing separation to occur between reference and measured impedance and preventing the calculated cumulative sum to rise). Measured impedance can be more sensitive to OptiVol for detecting changes in patient status under these circumstances. Furthermore, because impedance provides orthogonal information not captured by OptiVol in certain situations, it may also be added to existing device diagnostics-based models to enhance their overall performance.

Conclusions

Directly measured intrathoracic impedance, measured using an implantable device, provides data that can be used to identify risk stratification in patients with HFrEF. Specifically, baseline measured impedance predicts all-cause mortality. Changes from baseline measured impedance result in a change in the predicted mortality. The prognostic value of directly measured impedance is additive to and independent of the impedance-dependent fluid index. Thus, measured impedance can support risk stratification in chronic heart failure patients.

Sources of Funding

This work was supported by National Institutes of Health grants R56HL123478 (Dr Zile), the Research Service of the Department of Veterans Affairs (5101CX000415-02 and 5101BX000487-04 to Dr Zile), and Medtronic, Plc. (Dr Zile).

Disclosures

Dr Zile received research grants from and served as consultant to Medtronic, Plc. Drs Sharma, Warman, and Bennett and Mr Johnson are Medtronic employees. Dr Baicu reports no conflicts.

References

Impedance Predicts All-Cause Mortality

9

Prediction of All-Cause Mortality Based on the Direct Measurement of Intrathoracic Impedance
Michael R. Zile, Vinod Sharma, James W. Johnson, Eduardo N. Warman, Catalin F. Baicu and Tom D. Bennett

Circ Heart Fail. 2016;9:e002543
doi: 10.1161/CIRCHEARTFAILURE.115.002543
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/9/1/e002543

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/