Cancer Therapy–Related Cardiac Dysfunction and Heart Failure

Part 2: Prevention, Treatment, Guidelines, and Future Directions

Carine E. Hamo, MD; Michelle W. Bloom, MD; Daniela Cardinale, MD, PhD; Bonnie Ky, MD, MSCE; Anju Nohria, MD; Lea Baer, MD; Hal Skopicki, MD, PhD; Daniel J. Lenihan, MD; Mihai Gheorghiade, MD; Alexander R. Lyon, MD, PhD; Javed Butler, MD, MPH, MBA

Abstract—Success with oncologic treatment has allowed cancer patients to experience longer cancer-free survival gains. Unfortunately, this success has been tempered by unintended and often devastating cardiac complications affecting overall patient outcomes. Cardiac toxicity, specifically the association of several cancer therapy agents with the development of left ventricular dysfunction and cardiomyopathy, is an issue of growing concern. Although the pathophysiologic mechanisms behind cardiac toxicity have been characterized, there is currently no evidence-based approach for monitoring and management of these patients. In the first of a 2-part review, we discuss the epidemiologic, pathophysiologic, risk factors, and imaging aspects of cancer therapy–related cardiac dysfunction and heart failure. In this second part, we discuss the prevention and treatment aspects in these patients and conclude with highlighting the evidence gaps and future directions for research in this area. (Circ Heart Fail. 2016;9:e002843. DOI: 10.1161/CIRCHEARTFAILURE.115.002843.)

Key Words: cardiomyopathies ■ cardiotoxicity ■ heart failure ■ heart ■ trastuzumab

Mortality from cancer has decreased tremendously over the past few decades, in part, through earlier diagnosis and novel treatments. Unfortunately, although cancer-free survival has increased, complications from cancer therapy, particularly effects of cardiac function have limited patient outcomes, impacting the overall morbidity and mortality adversely.1 Heart failure (HF) as a result of cancer therapy has been linked to a 3.5-fold increased mortality risk compared with idiopathic cardiomyopathy.2 An integrative approach between the oncologist and cardiologist can aid in minimizing these detrimental effects. In the second part of this 2-part review, we discuss evaluation, surveillance, prevention, and treatment in this patient population. We highlight a proposed algorithm for approaching these patients before, during, and following cancer therapy. We conclude highlight challenges within the field and areas that need further research.

Prevention Strategies

β-Blockers

There is growing evidence suggesting a cardioprotective role of β-blockers in prevention of anthracycline-induced cardiotoxicity. Carvedilol, which is also an antioxidant and has the ability to chelate iron, prevented cardiac histopathology caused by doxorubicin.3 Carvedilol may prevent strain abnormalities after anthracycline use.4 In studies with carvedilol5 and nebivolol6 at initiation of anthracycline use, both agents resulted in higher degree of left ventricular ejection fraction (LVEF) preservation. The use of β-blockers during treatment with trastuzumab and anthracyclines was associated with a lower incidence of HF over a 5-year period.7 Although carvedilol and nebivolol are beneficial, nonselective β-blockers, such as propranolol, may in fact be cardiotoxic,8 and the effect of metoprolol is neutral.9

Renin–Angiotensin Inhibitors

Animal studies suggest that angiotensin-converting enzyme inhibitors (ACEI) may be cardioprotective in anthracycline toxicity.10 Enalapril treatment 1 week before doxorubicin and continued for 3 weeks after the last dose preserved mitochondrial function and downregulated free-radical generation.11 Beneficial mechanisms include attenuation of fibrosis and oxidative stress and decreased angiotensin-induced blockade of the neuregulin/ERb system.12 Some data on ACEI benefit...
in reducing chemotherapy-related HF have been disappointing, although criticism of these trials included delay in initiation and broad enrollment of patients on multiple chemotherapy regimens. The benefit of a prophylactic ACEI strategy may be enhanced with risk stratification. Treatment with enalapril using troponin I elevation to identify and stratify high-risk anthracycline patients prevented reduction in LVEF and the development of cardiotoxicity. The role of ACEI in trastuzumab or radiation-treated patients has not yet been extensively studied. Telmisartan, when administered immediately before epirubicin, may reduce the formation of reactive oxygen species and attenuate the development of myocardial dysfunction in patients receiving higher doses of epirubicin.

Aldosterone Antagonist Therapy and Other HF Therapies

Aldosterone antagonists have been speculated to attenuate trastuzumab-induced myocardial dysfunction through inhibition of the EGFR receptor, though further study is warranted. Spironolactone, used simultaneously with anthracyclines in breast cancer patients with preserved left ventricular (LV) function, may attenuate left ventricular dysfunction (LVD) suggesting a role in prevention of both systolic and diastolic dysfunctions. The role of other agents used in HF management, such as hydralazine/nitrates and digoxin, has not been studied in the cancer cardiotoxicity population; however, guideline derived medical treatment in general should be employed in all patients with LVD.

Combination Therapy

The OVERCOME trial (Prevention of Left Ventricular Dysfunction with Enalapril and Carvedilol in Patients Submitted to Intensive Chemotherapy for the Treatment of Malignant Hemopathies) used a combination of carvedilol and enalapril in patients with leukemia or those planned for stem cell transplantation. In patients who received combination therapy, there was no reduction in LVEF compared with those who received placebo. In addition, patients on combination therapy had a lower incidence of death or HF. Preliminary results of the Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA) trial revealed that candesartan, but not metoprolol tartrate, prevented a modest short-term decline in LVEF during anthracycline inclusive breast cancer therapy as measured by cardiac magnetic resonance imaging. Longer term follow-up will further establish a preventative role of angiotensin receptor blockade.

Dexrazoxane

Dexrazoxane, a derivative of the metal-chelating agent EDTA, is thought to attenuate anthracycline cardiac toxicity through iron chelation and decrease in production of free radicals. In addition, dexrazoxane binds to topoisomerase 2, preventing the formation of anthracycline-mediated DNA-Top2 complexes. In patients treated with anthracyclines, dexrazoxane decreased HF risk and increased cardiac event–free survival. However, the mechanism by which dexrazoxane provides cardioprotection has raised concerns that this agent may attenuate doxorubicin antitumor activity, through binding to both Top2-α and Top2-β. Clinical trial data are inconclusive, but a Cochrane review demonstrated no difference in efficacy of anthracyclines against the primary malignancy with the addition of dexrazoxane. The American Society of Clinical Oncology recommends that use of dexrazoxane should be limited to adult patients in the metastatic breast cancer setting and other malignancies who have received >300 mg/m2 and who may benefit from use of additional anthracyclines. Recent data demonstrated long-term efficacy in reducing HF in cancer survivors from the pediatric cohort, and therefore, new studies are required to determine safety and efficacy in adult cancer populations. A meta-analysis on the prophylactic use of dexrazoxane in patients receiving anthracyclines revealed a decrease in cardiac events.

Statins

3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in addition to their lipid lowering, exert cardioprotective effects through pleiotropic mechanisms. Studies suggest the benefit of statins in reducing anthracycline-mediated cardiomyocyte death. In a retrospective cohort study of >600 cancer patients, uninterrupted statin use resulted in reduced HF. In patients without preexisting cardiovascular abnormalities, prophylactic atorvastatin led to higher preservation of LVEF. To date, no prospective trials have addressed the role of statins in the prevention of cancer therapy–related cardiotoxicity (Table 1).

Primordial Versus Primary Versus Secondary Prevention

Prevention may be primary, extended to all patients already treated with potentially cardiotoxic therapies, or secondary in selected high-risk patients showing preclinical signs of cardiotoxicity as in the form of biomarker increase, strain decrease, etc. More recently, the concept of primordial prevention with cardioprotective therapies has been described to address the population of patients immediately after initial cancer diagnosis but preceding cancer therapy. A tailored prevention strategy based on the cardiac risk stratification according to patient-related (including genetic predisposition) and therapy-related risk factors bears further investigation.

Treatment of LVD and HF

Conventional therapy with β-blockers and ACEI in LVD and HF is extrapolated to patients with chemotherapy-induced cardiotoxicity, although randomized trial data are lacking. Enalapril and carvedilol given 1 to 2 months after anthracycline therapy in patients with LVD led to LVEF recovery in most cases; however, when treatment was delayed, recovery was partial or absent. In another study, patients with LVD, regardless of the presence of symptoms, were given either enalapril (before 1999) or enalapril and β-blocker (carvedilol or bisoprolol after 1999) and showed recovery of LVEF with greater improvement with combined therapy. The role of HF treatment in trastuzumab-induced LVD has not been established (Table 2).
Table 1. Prevention of Left Ventricular Dysfunction in Patients with Cardiotoxic Chemotherapy

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Study</th>
<th>Patient Population and Cancer Therapy</th>
<th>N</th>
<th>Cardiac Treatment Modality</th>
<th>Timing of Initiation of Treatment</th>
<th>Mean Follow-Up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalay et al<sup>5</sup></td>
<td>RCT</td>
<td>Patients planned to receive anthracyclines, planned (breast, lymphoma, other) adriamycin or epirubicin</td>
<td>50</td>
<td>Carvedilol 12.5 mg once daily vs placebo</td>
<td>Initiated before chemo</td>
<td>6 mo</td>
<td>Mean EF 68.9 vs 52.3 (P<0.001) at 6 mo follow-up Both systolic and diastolic diameters were significantly increased in control, and diastolic parameters (E and E/A ratios significantly reduced in control group) Lower mortality (but not statistically significant) in carvedilol group</td>
</tr>
<tr>
<td>Seicean et al<sup>7</sup></td>
<td>Propensity matched control; Competing risk framework</td>
<td>Breast cancer patients with normal EF before between 2005 and 2010; Anthracyclines or anthracyclines followed by trastuzumab with or without radiotherapy</td>
<td>920 (318 used)</td>
<td>Continuous BB (n=106) vs not on continuous BB (n=212)</td>
<td>BB initiated before cancer rx</td>
<td>3.2 y</td>
<td>Coincidental continuous use of BB associated with lower incidence of new HF in breast cancer patients with normal EF during median follow-up of 5.2 y (hazard ratio, 0.2; CI, 0.1–0.5, P=0.003) HF events 5 vs 27 (P=0.008) in continuous BB vs no BB group</td>
</tr>
<tr>
<td>Kaya et al<sup>6</sup></td>
<td>RCT</td>
<td>Breast cancer and planned chemotherapy</td>
<td>45</td>
<td>Nebivolol 5 mg daily vs placebo</td>
<td>Echocardiogram and NT pro-BNP at baseline and 6 mo of chemo</td>
<td>At 6 mo, LVEDD and LVDD increased in placebo group but remained unchanged in nebivolol group (P=0.01 for both) Placebo group had lower LVEF than nebivolol at 6 mo NT BNP increased in placebo group</td>
<td></td>
</tr>
<tr>
<td>Elitok et al<sup>4</sup></td>
<td>RCT</td>
<td>Patients with breast cancer planned for anthracyclines</td>
<td>80</td>
<td>Carvedilol vs placebo</td>
<td>Carvedilol 12.5 mg daily for 6 mo</td>
<td>Echo with strain at baseline and 6 mo post anthracycline</td>
<td>Significant decrease in strain parameters in control group at 6 mo</td>
</tr>
<tr>
<td>Nakamae et al<sup>32</sup></td>
<td>RCT</td>
<td>Patients scheduled to undergo standard chemo with CHOP</td>
<td>40</td>
<td>Valsartan 80 mg daily vs none</td>
<td>ARB simultaneous on day 1 of CHOP</td>
<td>Neurohormonal, echo, and ECG parameters measured before, days 3,5,7 and after initiation of CHOP 7 d</td>
<td>Valsartan significantly prevented transient increases in LVEDd, QTc dispersion and BNP elevation (P<0.05) with no significant change in BP or HR Ang II may play a role in acute chemo-induced cardiotoxicity and ARB may prevent acute CHOP toxicity</td>
</tr>
<tr>
<td>Cardinale et al<sup>14</sup></td>
<td>RCT</td>
<td>High-risk, high-dose chemo patients (defined by early increased troponin I level) from 2002 to 2004 Included primary resistant BC, AML, relapsed, or refractory Hodgkin’s lymphoma, Ewing’s sarcoma</td>
<td>114</td>
<td>Enalapril 20 mg daily vs none</td>
<td>1 month after last high-dose chemo, continued for 1 y</td>
<td>Cardiac evaluation including: late TnI (at randomization, before enalapril, 2,3,6,12 mo later) At baseline, 1,2,6, and 12 mo after high-dose chemo</td>
<td>Absolute decrease in LVEF >10% to decline below normal value (LVEF, 50%) (43% vs 0%) and increase in end-diastolic and end-systolic volumes only in untreated patients (P<0.001)</td>
</tr>
<tr>
<td>Cadeddu et al<sup>15</sup></td>
<td>RCT, placebo cont.</td>
<td>Patients planned to undergo chemo with epirubicin (cumulative dose 400 mg/m²) based chemo with baseline EF >55% and no history of heart disease, HTN, DM</td>
<td>49</td>
<td>Telmisartan 40 mg daily vs placebo</td>
<td>1 week before chemo</td>
<td>Echo, TD, strain/strain rate (SR) and plasma levels of inflammatory and oxidative stress markers at baseline and at 7 d after every new epirubicin dose of 100 mg/m² 3 mo</td>
<td>Impairment in strain rate peak at epi dose of 200 mg/m² (no significant difference between groups) but at 300 and 400 mg/m² SR normalized only in telmisartan group (P<0.001) Significant increase in ROS and interleukin-6 in placebo</td>
</tr>
</tbody>
</table>

(Continued)
Survival: Before, During, and After Cancer Treatment
Survival strategies are currently based on expert consensus. One approach includes screening for high-risk cardiac and oncologic factors to stratify patients. Optimization of pre-existing conditions before cancer therapy should be attempted. Baseline detailed echocardiogram, including strain imaging when available, should be performed.36,37 The presence of high-risk factors should prompt cardio-oncology consultation. Incorporation of biomarkers is recommended, although their role in routine monitoring is not fully established.37,38

The frequency and intervals with which to image patients vary with risk factors, type of chemotherapy, and planned dosing,38 and are currently center-dependent. Radiation therapy requires a different surveillance algorithm38,39 because of the potential for delayed cardiac dysfunction (Figure).

Not all asymptomatic left ventricular dysfunction and HF that develop during or after cancer therapy can be assumed to be the direct result of treatment, and thus, all new or worsening cardiac dysfunction should be evaluated according to guideline recommendations. This should include evaluation for other reversible causes of myocardial dysfunction and ischemic evaluation in those patients in whom suspicion is high.40 Higher suspicion for alternate causes is especially important in both older individuals and those with multiple comorbidities.38

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Study</th>
<th>Patient Population and Cancer Therapy</th>
<th>N</th>
<th>Cardiac Treatment Modality</th>
<th>Timing of Initiation of Treatment</th>
<th>Mean Follow-Up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosch et al38</td>
<td>RCT</td>
<td>Acute leukemia or malignancies planned for HSCT Without LVSD</td>
<td>90</td>
<td>Enalapril 10 mg BID and carvedilol 25 mg BID vs control</td>
<td>Started simultaneously at least 24 h before first chemo cycle</td>
<td>Echo and CMR before and at 6 mo after randomization, troponin I, and BNP at baseline and 12 h after each cycle 6 mo</td>
<td>LVEF significantly decreased in controls Compared with controls, patients in treatment group had lower incidence of combined end point of death or HF (6.7% vs 22%, P=0.036) and of death, HF, or LVEF <45% (6.7% vs 24.4%, P=0.02) Marked differences in the acute leukemia group</td>
</tr>
<tr>
<td>Georgakopoulos et al39</td>
<td>RCT</td>
<td>Lymphoma patients (HL and NHL)</td>
<td>125</td>
<td>Metoprolol vs enalapril vs placebo</td>
<td>Echo at baseline and 12 mo 1 y follow-up</td>
<td>Nonsignificant reduction in HF, primarily in metoprolol group 16% early cardiotoxicity 7.3% late cardiotoxicity (more in elderly) Overall negative study: Metoprolol and enalapril do not reduce risk of cardiotoxicity in patients with doxorubicin</td>
<td></td>
</tr>
</tbody>
</table>

| Statins | Acar et al31 | RCT placebo control | Patients undergoing anthracycline chemotherapy without previous cardiac history and regardless of lipid levels; Adriamycin or idarubicin | 40 | Atorvastatin 40 mg qd vs placebo | Before chemotherapy | Echo at baseline and 6 mo after chemotherapy 6 mo | Statin vs control at 6 mo: LVEF: +1.3% vs −7.9% in statin vs control (P=0.001) LVEDD (mm): 0.15 vs +2.0 (P=0.021) LVESD −1.35 vs 2.1 (P<0.001) Note: primary endpoint of LVEF <50% did not reach statistical significance |

| Seicean et al32 | Observational clinical cohort study | 628 women with newly diagnosed breast cancer; anthracyclines± trastuzumab 628 (201 matched) | Uninterrupted statin therapy | Statin therapy initiated incidentally before cancer therapy | New onset HF in 67 of 201 matched patients. HR significantly lower 0.3 (P<0.02) for statin patients. Cardiotoxicity RRs: baseline EF, <55%; Trastuzumab use |

| ARB indicates angiotensin receptor blocker; CHOP, cyclophosphamide, hydroxydaunorubicin, oncovin, prednisone; CI, confidence interval; E, early diastolic mitral inflow velocity; E/A, early diastolic mitral inflow velocity/late diastolic mitral inflow velocity; EF, ejection fraction; HF, heart failure; HL, Hodgkin’s lymphoma; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; LVSD, left ventricular systolic dysfunction; NHL, non-Hodgkin’s lymphoma; NT-proBNP, N-terminal pro-brain natriuretic peptide; RAAS, renin-angiotensin-aldosterone system; RCT, randomized controlled trial; RF, risk factor; Rx, treatment; and TD, tissue doppler. |
recommendations for stopping/restarting directly reflect those used in the largest adjuvant trastuzumab trials, based on baseline systolic function and degree of LVEF % decline.43 Decisions on alteration in dosing or discontinuation of cancer treatment need to be weighed against oncologic risk and require collaboration between cardiologists and oncologists, personalizing the strategy to the individual patient and their prognosis. Predictors of LV recovery are poorly understood. Retrospective data have suggested that LV recovery can be expected in roughly 50% of patients who develop cancer therapy–related cardiotoxicity, and that younger age, smaller left atrial volume, and lower brain natriuretic peptide (BNP) levels at 5 years, also similar to the general population.43 Importantly, chemotherapy-related cardiomyopathy patients have higher rates of right ventricular dysfunction and, thus, are more likely to require right ventricular mechanical support. Nevertheless, cancer patients requiring mechanical circulatory support and orthotopic heart transplantation should be evaluated and considered appropriately for these advanced therapies.

Advanced HF Therapies in the Cancer Population

Similar to the non-cancer HF population, option for therapies in the chemotherapy-induced cardiomyopathy population includes implantable cardioverter defibrillator and chronic resynchronization therapy, LV assist devices, and orthotopic heart transplantation. In a recent study, patients with adriamycin–induced cardiomyopathy derived a similar echocardiographic and clinical benefit with chronic resynchronization therapy compared with other nonischemic patients.45 About 2.5% of nonischemic cardiomyopathy patients undergoing transplantation have chemotherapy-related cardiotoxicity, and survival is comparable with that of other nonischemic etiologies.46 Not surprisingly, cancer patients with cardiac toxicity are more likely to undergo mechanical circulatory support as destination therapy rather than as bridge to transplant, given the obligatory 5-year cancer-free survival as a requisite for transplant candidacy. Overall survival after mechanical circulatory support in these patients is 73% at 1 year and 63% at 5 years, also similar to the general population.43 Important, chemotherapy-related cardiomyopathy patients have higher rates of right ventricular dysfunction and, thus, are more likely to require right ventricular mechanical support. Nevertheless, cancer patients requiring mechanical circulatory support and orthotopic heart transplantation should be evaluated and considered appropriately for these advanced therapies.

Current Guidelines

Several groups have published recommendations and consensus statements in the adult cancer population,36–38,48 but formal guidelines for prevention, surveillance, and treatment of cancer therapy–related cardiac toxicity are not yet available. Currently, the American College of Cardiology/American Heart Association HF guidelines report that agents, such as anthracyclines, trastuzumab, cyclophosphamide, taxanes, 5-fluorouracil, and interferons, may cause cardiotoxicity, and dexrazoxane is cardioprotective against anthracycline-induced cardiotoxicity.49 However, there are no specific monitoring recommendations. The European Society of Cardiology HF guidelines are similar and also recommend pre- and posttherapy LVEF evaluation and discontinuation of chemotherapy along with initiation of standard HF therapy once LVD ensues.50 The Canadian Trastuzumab Working group recommends baseline and 3-month interval imaging assessment for all patients under trastuzumab treatment, advocating for more frequent/stringent assessments in those patients at higher risk.51 The American Society of Echocardiography suggests echocardiography for baseline and follow-up monitoring, but there are no specific recommendations regarding frequency or duration of follow-up.52 American Society of Clinical Oncology

Table 2. Treatment of ASLVD in Adult Patients with Cardiotoxic Chemotherapy

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of Study</th>
<th>Patient Population</th>
<th>N</th>
<th>Cardiac Treatment Modality</th>
<th>Timing of Initiation of Treatment</th>
<th>Mean Follow-Up</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardinale et ala</td>
<td>Prospective</td>
<td>201 patients with LVEF ≤45% due to anthracyclines</td>
<td>201</td>
<td>Enalapril up to 20 mg/d and coreg up to 50 mg/d; of note: mean dose enalapril 11 mg/d and coreg 14 mg/d</td>
<td>Rx initiated immediately after detection of ASLVD</td>
<td>5.2 y</td>
<td>Primary EP: LVEF response to therapy; Responders, *42%; partial responders, 13%; nonresponders, 45%</td>
</tr>
<tr>
<td>Cardinale et ala</td>
<td>Prospective</td>
<td>Mix of cancer, non-Hodgkin’s lymphoma Chemotherapy naïve patients scheduled for anthracyclines (note excluded high-dose anthracycline or trastuzumab)</td>
<td>2625</td>
<td>Enalapril alone (before 1999) enalapril and β-blockers carvedilol or bisoprolol (after 1999)</td>
<td>Therapy promptly administered and uptitrated to maximal tolerated doses</td>
<td>Median follow-up 36 mo</td>
<td>Anthracycline-induced cardiotoxicity occurred in 9% of adult treated patients (dose dependent; highest incidence in first year after completion of chemotherapy)</td>
</tr>
</tbody>
</table>

ASLVD indicates asymptomatic left ventricular dysfunction; EP, end point; LVEF, and left ventricular ejection fraction.

Responders had a significantly shorter time to initiation of therapy.
Hamo et al Cancer Therapy–Related Heart Failure

recommends dexrazoxane only in metastatic patients who have received >300 mg/m² doxorubicin and would benefit from additional anthracycline administration.²⁶ American Society of Clinical Oncology reports that there is currently no standard strategy for long-term monitoring through biomarkers or imaging and no direct evidence regarding the treatment of LVD in asymptomatic patients¹ (Table 3).

Knowledge Gaps and Future Directions

The specialty of cardio-oncology has gained significant momentum, with increasing awareness and interest in advancing the field. This parallels the larger armamentarium of therapies now available to patients with cancer, many of which have redefined life expectancy. There are, however, multiple gaps in the field, which bear addressing (Table 4). At present, there are no internationally published guidelines to address this specific patient population, and no standardized classification system to define cancer-related cardiac toxicity, LVD, and HF. Cardio-oncology guidelines will need to account for different subpopulations, such as those with metastatic and nonmetastatic disease. Furthermore, defining cardiac dysfunction through LVEF alone is insufficient. LVEF estimation may predict development of later cardiotoxicity but may not be sensitive enough to assess early preclinical changes, which might impact on management decisions. Currently, incidence of cancer therapy–related LVD and HF are likely underestimated, representing the typically younger and healthier population in largest cancer trials. Standardization of cardiac toxicity definitions will allow for prospective study of epidemiology.

There are various limitations in our understanding of optimal clinical management of cardiac disease in the cancer population. At present, the largest focus has centered on HF reduced ejection fraction, but the incidence and management of HF preserved ejection fraction is largely unknown. Clinical trials addressing prevention, prophylactic medical therapy, length and types of therapy once cardiotoxicity develops, and the safety of rechallenging with cancer therapy, all remain critical unaddressed issues. Furthermore, prospectively validated risk predictive models would help clinicians to individualize care, tailoring imaging and biomarker surveillance strategies, and initiate early or prophylactic medical therapy for those patients in highest risk categories.

Figure. Proposed algorithm for the surveillance and treatment of cardiotoxicity in patients receiving potentially cardiotoxic chemotherapy before (A), during (B), and following (C) therapy. *continuous variables of risk; ¹MUGA may be considered if echocardiography or CMR not available; ²for high-risk patients or when available, strain imaging, use of Echo contrast when indicated; ³65–74 may represent an intermediate risk group; ⁴Troponin, BNP; and ⁵Consider earlier imaging if higher baseline risk. ACE-I, indicates angiotensin-converting enzyme inhibitors; BB, beta-blocker; CAD, coronary artery disease; CHF, congestive heart failure; CMR, cardiac magnetic resonance; D/C, discontinue; HTN, hypertension; Hx, history; LVD, left ventricular dysfunction; MI, myocardial infarction; MUGA, multigated acquisition scan; RT, radiation therapy; and Sx, symptoms.
outcomes for patients with previous cancer therapy–related cardiotoxicity.

There is a lack of universal agreement on prospective cardiovascular screening, especially for newer chemotherapeutic agents and for treatment strategies that require dual or additive therapy. Further understanding of drug mechanisms would allow for more targeted prevention and treatment. Echocardiographic imaging remains critical to surveillance. The addition of strain/speckle tracking shows promise, but echocardiographic imaging remains critical to surveillance. Further understanding of drug mechanisms would allow for more targeted prevention and treatment. Echocardiographic imaging remains critical to surveillance.

There is limited understanding on the long-term effect of modest LVEF declines during therapy, the implications of dose interruptions and treatment delays in cancer therapy, and how cardiac interventions impact on long-term cardiac and cancer survival. Altering cancer treatment without strong supportive data may put patients at risk of undertreatment or decreased efficacy of therapy. Although all patients receiving anthracyclines should be considered to have some degree of cardiac toxicity, choosing which patients command dose alterations or treatment discontinuation remains arbitrary, with potentially far reaching implications on survival. The term actionable cardiotoxicity has been put forth to address the when and if of treatment continuation remains arbitrary, with potentially far reaching implications on survival. The term actionable cardiotoxicity has been put forth to address the when and if of treatment.

Cardiac progenitor cells may play a role in the treatment and prevention of anthracycline-induced cardiotoxicity and may be considered as a potential translational therapy in the future, helping to promote cardiac repair. Autologous cardiac progenitor cells can be obtained before antineoplastic drugs are...
given to cancer patients and subsequently administered to individuals who are particularly predisposed to cardiotoxicity.54

Significant individual variability in tolerance to cumulative anthracycline dose has suggested a role for genetic susceptibility. The clinical significance of this remains unknown but with further study may allow for more personalized oncologic therapy.

Conclusion

With survival gains in cancer therapy, attention and recognition of cardiac toxicities in cancer patients has become increasingly critical. Patients with cancer, either with preexisting cardiac disease or increased cardiac risk, require individualized risk stratification strategies. Patients who develop myocardial dysfunction during therapy often require modifications or withdrawal of life-saving cancer therapies, with profound implications on clinical outcome. Preclinical identification of cardiac toxicities may allow oncologists to continue cancer therapy without interruption. An evidence-based approach would allow enhanced delivery of care to this patient population. This can only be accomplished by further investigation and through a partnership between cardiologist and oncologist, increasingly delivered via formal cardio-oncology services with access to a multidisciplinary team effort to ensure optimal patient outcomes.

Disclosures

Dr Bloom is a consultant for Bristol Myers Squibb. Dr Ky is supported by NIH K23 HL095661 and R01 HL118018 and has an investigator-initiated research grant from Pfizer, Inc. Dr Nohria is a consultant for Vertex Pharmaceuticals. Dr Gheorghiade reports consulting relationships with Abbott Laboratories, Astellas, AstraZeneca, Bayer Schering Pharma AG, Cardiorentis Ltd, CorThera, Cytokinetiks, CytoPhex Inc, DebioPharm SA, Errekappa Therapeutici, GlaxoSmithKline, Ikaria, Intersection Medical Inc, Johnson & Johnson, Medtronic, Merck, Novartis Pharma AG, Ono Pharmaceuticals USA, Otsuka Pharmaceuticals, Palatin Technologies, Pericor Therapeutics, Protein Design Laboratories, sanofi-aventis, Sigma Tau, Solvay Pharmaceuticals, Sticares InterACT, Takeda Pharmaceuticals North America Inc, and Trevena Therapeutics. Dr Butler reports receiving research support from the National Institutes of Health and European Union and serve as a consultant to Amgen, Bayer, Cardiocell, Celladon, Novartis, Trevena, Relypsa, Z Pharma, and Zensun. The other authors report no conflict of interest.

References

Table 4. Future Directions in the Field of Cardio-Oncology

<table>
<thead>
<tr>
<th>Domain</th>
<th>Problem</th>
<th>Potential Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Lack of universally accepted definition of cardiac toxicity</td>
<td>Consensus-driven definition for use in prospective clinical trials and practice</td>
</tr>
<tr>
<td></td>
<td>Definition of cardiac dysfunction through LVEF alone is insufficient</td>
<td></td>
</tr>
<tr>
<td>Disease entity</td>
<td>Limited understanding of the pathophysiologic mechanisms of various</td>
<td>More basic science research to better define pathophysiology of cancer</td>
</tr>
<tr>
<td></td>
<td>chemotherapy agents</td>
<td>therapeutics</td>
</tr>
<tr>
<td>Guidelines</td>
<td>No internationally published guidelines to account for different subsets of</td>
<td>More large prospective clinical trials to influence evidence-based guideline</td>
</tr>
<tr>
<td></td>
<td>patient populations</td>
<td>development</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>Probable underestimation of incidence as most trials include younger,</td>
<td>Inclusion of older and/or higher risk populations in clinical trials Study HF</td>
</tr>
<tr>
<td></td>
<td>healthier population</td>
<td>with both reduced and preserved LVEF</td>
</tr>
<tr>
<td>Risk stratification</td>
<td>No universal validated risk prediction model</td>
<td>Development of validated model based on different clinical profiles</td>
</tr>
<tr>
<td>Screening and surveillance</td>
<td>Lack of universal agreement on best practice for screening and</td>
<td>Development of prospective monitoring paradigm</td>
</tr>
<tr>
<td></td>
<td>surveillance interval</td>
<td></td>
</tr>
<tr>
<td>Prevention</td>
<td>Lack of data to support prevention of cardiotoxicity and the role for</td>
<td>More trials for prevention of cardiotoxicity with attention to primary vs secondary</td>
</tr>
<tr>
<td></td>
<td>prophylactic medical therapy</td>
<td>prevention strategies</td>
</tr>
<tr>
<td>Surrogate markers</td>
<td>Focus on primarily troponin and natriuretic peptide</td>
<td>Further studies on novel biomarker approaches</td>
</tr>
<tr>
<td>Treatment</td>
<td>No established treatment in this population; lack of data on safety and</td>
<td>More clinical trials to address role of single agent vs combination therapy</td>
</tr>
<tr>
<td></td>
<td>feasibility of rechallenging with chemotherapy once LVD ensues</td>
<td></td>
</tr>
<tr>
<td>Novel approaches</td>
<td>Limited data on novel approaches for management, eg, the role of</td>
<td>Expansion of data from animal studies to human subjects Better definition of the</td>
</tr>
<tr>
<td></td>
<td>cardiaic progenitor cells in treatment or the role of genetic polymorphisms</td>
<td>role for genetic testing</td>
</tr>
<tr>
<td></td>
<td>in cardiotoxicity</td>
<td></td>
</tr>
</tbody>
</table>

HF indicates heart failure; LVEF, left ventricular ejection fraction; and LVD, left ventricular dysfunction.

22. Jones RL. Utility of deferoxoxane for the reduction of anthracycline-in-

24. Marty M, Espié M, Llombart B, Monnier A, Rapoport BL, Stahalova V; Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardoxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemo-

27. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;C0003917.

29. Huelsembeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-

30. Seicen S, Seicen A, Planca JC, Budd GT, Marwick TH. Effect of statin therapy on the risk for incident heart failure in patients with breast can-

33. Khouri MG, Douglas PS, Mackey JR, Martin J, Scott JM, Scherrer-

41. Bosch X, Rovira S, Sitges M, Domènech A, Ortiz-Pérez JT, de Caralt TM, Morales-Ruiz M, Perea JR, Monzo M, Esteve J. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (pre-

Cancer Therapy–Related Heart Failure

Cancer Therapy–Related Cardiac Dysfunction and Heart Failure: Part 2: Prevention, Treatment, Guidelines, and Future Directions

Carine E. Hamo, Michelle W. Bloom, Daniela Cardinale, Bonnie Ky, Anju Nohria, Lea Baer, Hal Skopicki, Daniel J. Lenihan, Mihai Gheorghiade, Alexander R. Lyon and Javed Butler

Circ Heart Fail. 2016;9:e002843
doi: 10.1161/CIRCHEARTFAILURE.115.002843

Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/9/2/e002843

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at: http://circheartfailure.ahajournals.org//subscriptions/