Diagnosis, Treatment, and Outcome of Giant Cell Myocarditis

in the Era of Combined Immunosuppression

Kandolin et al: Giant-Cell Myocarditis

Riina Kandolin, MD; Jukka Lehtonen, MD; Kaisa Salmenkivi, MD;
Anne Räisänen-Sokolowski, MD; Jyri Lommi, MD; Markku Kupari, MD

From the Division of Cardiology, Department of Medicine (R.K., J.L., J.L., M.K.) and from the Department of Pathology, HUSLAB (K.S., A.R-S.), Helsinki University Central Hospital, Helsinki, Finland

Correspondence to:
Dr Jukka Lehtonen, Division of Cardiology
Helsinki University Central Hospital
00029 Helsinki, Finland
E-mail: Jukka.Lehtonen@hus.fi
Tel: +35894712442
Fax: 358-9-471 74574

DOI: 10.1161/CIRCHEARTFAILURE.112.969261

Journal Subject Code: [16] Myocardial cardiomyopathy disease
Abstract

Background—Giant cell myocarditis (GCM) often escapes diagnosis until autopsy or transplantation and has defied proper treatment trials for its rarity and deadly behavior. Current therapy rests on multiple-drug immunosuppression but its prognostic influence remains poorly known. We set out to analyze 1) our experience in diagnosing GCM and 2) the outcome of patients on combined immunosuppression.

Methods and Results—We reviewed the histories, diagnostic procedures, details of treatment and outcome of 32 consecutive patients with histologically verified GCM treated in our hospital since 1991. Twenty-six patients (81%) were diagnosed by endomyocardial or surgical biopsies and 6 at autopsy or post-transplantation. Twenty-eight (88%) patients underwent endomyocardial biopsy. The sensitivity of transvenous endomyocardial biopsy increased from 68% (19/28 patients) to 93% (26/28) after up to 2 repeat procedures. The 26 biopsy-diagnosed patients were treated with combined immunosuppression (2 to 4 drugs) including cyclosporine in 20 patients. The Kaplan-Meier estimates of transplant-free survival from symptom onset were 69% at 1 year, 58% at 2 years, and 52% at 5 years. Of the transplant-free survivors, 10/17 (59%) experienced sustained ventricular tachyarrhythmias during follow-up and 3 received intracardiac defibrillator shocks for ventricular tachycardia or fibrillation.

Conclusions—Repeat endomyocardial biopsies are frequently needed to diagnose GCM. On contemporary immunosuppression, two thirds of patients reach a partial clinical remission characterized by freedom from severe heart failure and need of transplantation but continuing proneness to ventricular tachyarrhythmias.

Key Words: myocarditis; endomyocardial biopsy; cardiac transplant
Giant cell myocarditis (GCM) is known as a rare, rapidly progressive and frequently fatal myocardial disease in young and middle-aged adults. It is attributed to a T lymphocyte-mediated inflammation of the heart muscle and associates with systemic autoimmune diseases in ~20% of cases. The most common early manifestations are heart failure, ventricular arrhythmias and atrioventricular block, but GCM may also disguise as an acute myocardial infarction and rarely presents as an unexpected sudden cardiac death. The diagnosis of GCM rests fully on microscopy of the heart muscle and even in experienced centers more than 4 in 10 cases may escape detection until autopsy or cardiac transplantation.

Aside from non-specific measures to combat its symptomatic manifestations, the treatment of GCM relies on immunosuppression. Retrospective observations from the Multicenter GCM Registry and a small prospective study with repeat biopsies suggest that cyclosporine-based combined immunosuppression may be able to reduce myocardial inflammation and improve clinical outcome. Yet, these data are uncontrolled and suffer from lack of details about the treatments given and the possibility of survivor bias. The key problem is that the rarity and seriousness of GCM make controlled treatment trials, let alone use of a placebo arm, virtually impossible. The only such attempt, a co-operative endeavor by 17 centers, was terminated after 6 years due to difficulties in recruiting patients. Therefore, carefully studied observational patient series continue to add to the knowledge about GCM. We report here our experience in 32 patients with GCM of whom 26 received combined immunosuppression. We focus on the diagnosis of GCM and on the outcome of patients with contemporary treatment. Our key observations suggest that repeat and imaging-guided biopsies increase the detection rate of GCM and that combined immunosuppression supported by therapy for heart failure and arrhythmias may result in transplant-free survival in two thirds of patients.
Methods

Patients

From the year 1991 through 2011, 32 patients with histologically verified GCM were seen at the Division of Cardiology, Helsinki University Central Hospital. The majority of diagnoses (29/32) were made after year 2000, i.e. during the latter half of the study period. The medical records, laboratory test, imaging studies and available biopsy material of all patients were retrospectively reviewed and analyzed for the present study. Of the 32 cases, 26 were diagnosed by endomyocardial (n=23) or surgical (n=3) biopsies, 4 at autopsy and 2 from explanted hearts post-transplantation. The median follow-up time calculated from symptom onset was 15.0 months (range, 0.3 – 90.3 months). Nine patients with ventricular tachycardia (VT) have been reported previously but we provide new clinical and follow-up data of them in the present report.

Diagnostic Practice

From 1991 through 2005, we were routinely using clinical examination, 12-lead ECG, laboratory tests and echocardiography to explore the etiology of an unknown myocardial disease. Selective coronary angiography and left ventricular cineangiography were done whenever coronary artery disease was to be excluded. Angiography was not performed if coronary disease was considered unlikely, e.g. in women aged < 50 years free of risk factors for atherosclerosis. Endomyocardial biopsies (EMBs) were taken if a chronic infiltrative or inflammatory myocardial disease or an aggressive myocarditis, like GCM, was considered possible. Biopsies were usually omitted, however, if chronic dilated cardiomyopathy was the likely diagnosis on clinical grounds. Right ventricular septum was the target area for myocardial sampling. In 2005, we revised our diagnostic strategy and have since been actively using gadolinium-enhanced cardiac MRI (Gd-MRI) and 18F-fluorodeoxyglucose positron emission...
tomography (¹⁸FDG-PET) combined with resting myocardial perfusion imaging with ⁹⁹ᵐTc-tetrofosmin SPECT to identify and localize possible inflammatory myocardial processes. The details of these imaging methods in our hands were recently published.⁷ Concomitant with the active use of Gd-MRI and ¹⁸FDG-PET we changed our EMB policy from random right ventricular septal sampling to targeted biopsies of myocardial areas showing signs of damage or inflammation at MRI or PET. Since then, left ventricular biopsies were also acquired more often and we started to admit patients for repeat EMBs if the first samples showed nondiagnostic despite other findings suggestive of an inflammatory myocardial disease.⁷

Practice of Immunosuppression

In the early 1990’s, patients with biopsy-verified GCM were treated with a combination of prednisone and azathioprine in addition to a general treatment for heart failure and arrhythmias. Since the first report of the Multicenter GCM Study Group,⁸ our recommended treatment has been the triple combination of cyclosporine, prednisone, and azathioprine. Exceptionally, other immunosuppressive drugs like mycophenolate mofetil, methotrexate or the T-cell antibody muromonab could be added or substituted for other agents. Our practice has been to initiate cyclosporine cautiously aiming at trough blood concentrations inside the lower therapeutic range for immunosuppression after cardiac transplantation (80-120 μg/l). Prednisone was started at 60 mg (or ~0.75-1 mg/kg) per day decreasing the dose thereafter at 1- to 2-month intervals to 10 mg per day after 6 months. In very severe cases, steroids could be introduced with intravenous methylprednisolone, 500 -1000 mg per day for 2 to 3 days. The duration of prednisone was not predefined, and continuation at a small dose (5-10 mg per day) was possible as long as was clinically considered necessary. Discontinuation of prednisone was considered if the patient had been stable for 6 to 12 months or if the side effects were intolerable. The target dose of azathioprine was ~1.5-2 mg/kg per day. The dose was
adjusted according to blood count and liver enzyme surveillance. Once stabilized, the patients were seen 2 to 4 times a year in our outpatient cardiology service.

Review of Biopsy Material

We initially identified from the medical records 36 patients with GCM, the diagnoses having been made by pathologists in the referring hospitals (n=18) or at our institution (n=18). The diagnosis of GCM was based on the presence of a widespread inflammatory infiltrate including lymphocytes, histiocytes and multinucleated giant cells in association with myocyte necrosis and eosinophils. We adhered to the early criteria of the Multicenter GCM Registry¹ and, to avoid any mistaking of sarcoidosis for GCM, unequivocal granuloma formation excluded the diagnosis of GCM. Two experienced cardiac pathologists (K.S., A.R-S.) reanalyzed the tissue samples. By the consensus of the reviewing pathologists, 4 of the initial diagnoses of GCM were converted to cardiac sarcoidosis. In 2 cases, the slides were unavailable for reanalysis. One diagnosis was based on autopsy and the other on EMB. The available histology reports described findings typical for GCM by experienced pathologists and both cases were retained in the study.

Statistical Analyses

We used chi-square or logrank tests for comparison. Survival analyses were calculated, first, from the onset of symptoms and, second, from the date of diagnosis. The time point of symptom onset was considered the date of the first medical contact for symptoms compatible with GCM. The former analyses encompassed all patients, even the ones diagnosed at autopsy or after transplantation, while the latter ones only included the 26 patients who were identified by cardiac biopsies and underwent GCM-targeted treatment. Including in the analysis cases identified postmortem or posttransplantation assumes that there is no benign form of GCM.
and that the diagnosed cases are therefore representative of all those who have the disease. In this respect our methods are identical to the strategy used in the prior survival studies in GCM. The primary end point for assessing outcome was heart transplantation or death. Transplant-free survival rates were compared using the log-rank test. In all tests, P-values <0.05 were considered statistically significant. All analyses were performed using SPSS-19 for Windows (SPSS Inc., IL, USA).

Results

Demographics and Clinical Presentation

The mean age (± SD) was 52.5 ± 12.7 years (range, 35-69) in patients diagnosed at autopsy or transplantation and 49.5 ± 11.1 years (range, 29-70) in patients diagnosed by lifetime biopsy. 22 of the 32 patients (69%) were female and 10 (31%) were male. The main presenting clinical manifestations were congestive heart failure in 10 of the 32 patients (31%), distal atrioventricular block in 10 patients (31%), sustained VT in 7 cases (22%) and a syndrome mimicking acute myocardial infarction with chest pain and ST-segment changes in 4 cases (13%). In 1 case, the first manifestation was an out-of-hospital cardiac arrest and death due to ventricular fibrillation (VF). Six patients (19%) had associated autoimmune disorders: reactive arthritis, iritis and thyreoiditis (n=1), vitiligo with orbital myositis (n=1), coeliac disease (n=1), psoriasis (n=1), rheumatoid arthritis (n=1), and hypothyroidism (n=1). Among the 32 patients there were 2 siblings; both had coeliac disease. They had one healthy brother and their first-degree relatives did not have evidence of cardiomyopathy or autoimmune diseases.

Findings at Cardiac Imaging

Thirty-one patients underwent echocardiography during the initial diagnostic work-up. The mean ejection fraction was 38 ± 13 % with values < 50 % in 23 patients (74 %). The left ven-
ventricle was dilated (end-diastolic diameter > 55 mm in women or > 60 mm in men) in 9 patients (28%). Twenty-one patients (68%) had locally thinned or thickened interventricular septum and 3 (10%) had aneurysms of the left ventricle (Figure 1). Twenty-two patients underwent coronary angiography; none had evidence of coronary artery disease.

Contrast-enhanced cardiac MRI was done in 9 patients and showed areas of late contrast enhancement in each. Twelve patients underwent 18FDG-PET combined with a myocardial perfusion study. Of them, 10 patients had focally enhanced 18FDG uptake that was superimposable on a 99mTc-tetrofosmin perfusion defect in 9 patients and involved the septum in all. Two patients had a perfusion defect without a “hot spot” at PET.

Confirmation of Diagnosis

A total of 28 (88%) of the 32 patients underwent one or more EMB sessions or surgical biopsies (Figure 2). The reported number of samples taken per session varied from 2 to 10 (median, 5.3). One of the procedures was complicated by pericardial tamponade requiring surgical drainage. GCM was diagnosed at the first EMB in 19/28 cases (sensitivity, 68%). Of the 9 patients with non-diagnostic histology initially, 7 underwent a second EMB session, which gave the diagnosis of GCM in 5 patients. Finally, 2 patients had a third EMB that exposed GCM in both. Thus, repeated procedures improved the yield of EMB from 68% to 93% (26/28 patients). In 3 patients, the repeat EMBs were taken from the left ventricle. All surgical biopsies were from the left ventricle. Typically, the first non-diagnostic biopsies showed non-specific abnormalities such as myocyte degeneration, edema, and nuclear size variation. The surgical biopsies revealing the presence of GCM in 3 patients were done in association with 1) resection of a left ventricular aneurysm, 2) placement of a left ventricular assist device and 3) treatment of cardiac tamponade (see above). The interval from the onset of symptoms to the biopsy diagnosis of GCM varied from 0.3 to 16 months (median, 3 months).
Four of the 32 cases were diagnosed at autopsy (Figure 2 and Figure 3) and 2 from explanted hearts after transplantation. Five of these 6 patients had undergone diagnostic procedures including echocardiography (5/6), coronary and left ventricular cineangiography (2/6) and EMB (2/6) but none had been studied with MRI or PET. Their diagnoses had been dilated cardiomyopathy (n=3), idiopathic atrioventricular block (n=1) and acute nonspecific myocarditis (n=1). The time from symptom onset to death or transplantation ranged from 1 to 66 months (median, 11 months).

Treatment

The 26 biopsy-diagnosed patients were all treated with combined immunosuppression that included steroids (n=26), azathioprine (n=24), cyclosporine (n=20), mycophenolate mofetil (n=3), muromonab (n=1), gammaglobulin (n=1) and methotrexate (n=1). Table 1 specifies the combinations used and Table 2 summarizes the mean doses of prednisone, azathioprine and cyclosporine as well as the blood cyclosporine concentrations during treatment. Seven patients received high-dose intravenous methylprednisolone. Twenty-five of the 26 patients were on beta-blockers and 19 received anti-arrrhythmic drugs (mainly amiodarone). Intracardiac defibrillators (ICD) were implanted in 18 patients, and 9 patients received a permanent pacemaker solely for a high-grade atrioventricular block.

The most significant side effects of treatment included cyclosporine-related elevations of serum creatinine in 10 patients (100 - 156 µmol/l); elevated liver enzymes, lymphocytopenia or pancreatic irritation attributed to azathioprine in 6 patients; and muscular weakness, marked weight gain, insomnia or cataract from prednisone in 7 patients.
Survival and Adverse Events

Figure 4 shows Kaplan-Maier curves for survival from the onset of symptoms for all 32 patients. Altogether 15 patients (47%) either died (n=5) or underwent transplantation (n=10) a median of 11.0 months (range, 0.3-66.0 months) from symptom onset. Among the 5 fatalities, GCM was diagnosed post-mortem in 4 patients and the fifth patients died two weeks after the diagnostic EMB. All 5 deaths were arrhythmic. Of the 10 transplanted patients, 3 died of post-operative complications (large intracardiac thrombus, bleeding, multiple organ failure) within 38 days of surgery. The remaining 7 transplanted patients were alive at the end of our follow-up in December 2011. One patient had a recurrence of GCM in the graft 4.8 years post-transplantation. The Kaplan-Meier estimates of transplant-free survival from symptom onset (95% CI) were 69% (50-83%) at 1 year, 58% at 2 years (39-75%) and 52% at 5 years (34-70%). Age, sex or symptoms at presentation did not predict outcome.

Figure 5 shows the Kaplan-Meier curves for survival from onset of GCM-targeted therapy (i.e from diagnosis) in the 26 patients diagnosed by EMB or surgical biopsy. Their follow-up times ranged from 0.3 to 90.0 months (median, 14.5 months). One of the 26 patients died and 8 patients (31%) underwent transplantation while on immunosuppressive medication: 6 patients were transplanted for severe heart failure and 2 for life-threatening arrhythmias. All 8 listings for transplantation were made within 9 months of diagnosis, and the transplantations were accomplished within 1 year of diagnosis in 7 of the 8 cases. Three transplanted patients died early of postoperative complications (see above). Thus, at the end of follow-up 22 of 26 patients (85%) having received GCM-targeted treatment were alive. Seventeen (65%) were alive free of transplantation with a median of 35.0 months from diagnosis (range, 4.0 – 90.0 months). Table 3 compares the characteristics of patients with and without the primary outcome event (death or transplantation) during follow-up. The one patient who expired was diagnosed two weeks prior death and thus received targeted therapy.
only for two weeks; therefore, data concerning her has been excluded from the treatment analysis in Table 3. Patients on cyclosporine had a trend towards a lower likelihood of cardiac transplant or death (4/20 vs 4/6, log rank p=0.086). Patients requiring a cardiac transplant had lower median left ventricular ejection fraction during follow-up (26 ± 7%) than patients surviving free of transplantation (45 ± 11%, p=0.03). The treatment delay (time from symptom onset to diagnosis and treatment) did not correlate with poor prognosis (death/transplant) of GCM (p= 0.71). The Kaplan-Meier estimate of transplant-free survival from diagnosis (95% CI) was 77% (56-90%) at 1 year, 63% at 2 years (42-81%) and 63% at 5 years (42-81%).

During follow-up, 24 of the 26 patients receiving GCM-targeted treatment (92%) had one or more episodes of VT, 17 patients (65%) had sustained VTs and 1 patient was resuscitated successfully from VF. Of the 18 patients receiving an ICD, 4 experienced appropriate shocks for sustained VT (n=3) or VF (n=1), and in another 4 patients VT was terminated with anti-tachycardia pacing. In the subgroup of transplant-free survivors, 10 of 17 (59%) had sustained VTs during follow-up and 3 received appropriate ICD shocks. During follow-up, 7 of the 26 patients receiving GCM-targeted therapy had NYHA II to IV chronic heart failure with EF between 20 and 40%. Six of these patients required cardiac transplantation and one was stabilized with medical treatment only.

Discussion

The key finding of this work is that current immunosuppression appeared able to arrest the disease process in two thirds of patients with GCM resulting in clinical remission sufficient for survival free of transplantation. Yet, the remission was incomplete in the sense that the patients remained subject to ventricular tachyarrhythmias, and our follow-up was too short to tell about prognosis years ahead. Another key lesson is that one set of nondiagnostic endomyocardial biopsy samples is far from being exclusive of GCM. If clinical presentation and
other findings suggest a serious myocardial disease, repeat biopsies are indicated. A clinically worthwhile observation was also the high frequency of atrioventricular block as the first manifestation of the disease, equaling the frequency of heart failure at hospital presentation.

With 32 patients ours is by far the largest series of GCM reported from a single institution. For comparison, the 5 core centers of the Multicenter GCM Study Group were able to collect altogether 28 patients over periods covering 10 to 17 years, and nearly 40 centers worldwide were needed to compose a series of 73 patients. Our hospital is a nationwide referral center for cardiac transplantation and therefore the present work is likely to cover most of the GCM cases diagnosed in the 5.2-million Finnish population over the 20 years of our study. The finding of increasing number of cases diagnosed over time suggests that the adoption of Gd-MRI and FDG-PET into clinical routine with an activated biopsy policy improved our detection rate of GCM. It is therefore possible that GCM was underdiagnosed in the 1990's and over the first years after 2000. Kyöö et al. reported recently that GCM caused 5.6% of the 649 fatalities attributed to myocarditis in death certificates between 1970 and 1988 in Finland. Resulting in an estimate of 35 fatal cases over 18 years in an era of missing pre-mortem recognition of GCM, these data support the representativeness of the present series.

The other strengths of our work are access to detailed patient data and the relative uniformity of the therapeutic strategy even though the diagnostic approach changed over time.

In the Multicenter GCM Registry, the main presenting manifestation was heart failure in 75% of cases, VT in 14%, a syndrome mimicking myocardial infarction in 6% and complete heart block in 5% of the cases. These were the main first manifestations in our series, too, but their frequency spectrum was different in that high-grade atrioventricular block was much more common (31%) and in fact equaled the frequency of heart failure (31%) at presentation. One explanation for the difference could be our particular activity in pursuing the diagnosis of an unexplained distal atrioventricular block in young and middle-aged indi-
viduas. GCM as the cause of years of monosymptomatic heart block, until sudden death (see Figure 3 and its legend), has been reported from elsewhere, too. Contrary to earlier observations, our present or previous findings do not support heart block as a distinguishing characteristic between cardiac sarcoidosis and GCM.

In the complete series of 73 patients of the Multicenter GCM Registry, 56 % of diagnoses were made by endomyocardial or surgical biopsies and the remaining 44 % at autopsy or after cardiac transplantation. In our work the proportion of biopsy diagnoses was as high as 26/32 cases (81 %). The relatively high rate of lifetime diagnoses was probably due to a proactive biopsy policy in our institution. We take patients with unexplained new complete atrioventricular block, ventricular arrhythmias or left ventricular dysfunction regularly to either MRI or FDG-PET, and if the imaging suggests inflammation or infiltration, right or left ventricular EMB is done. Severe, rapidly progressive symptoms and persistent release of troponin T also favor early EMB. It is also worthy of recognition that as many as 27 % of our biopsy-diagnosed cases (7/26) were detected by repeat procedures. We feel the seriousness of diseases like GCM or cardiac sarcoidosis justifies the risks of repeated biopsies if the imaging studies or other findings strongly suggest these conditions. The diagnostic sensitivity of our endomyocardial biopsies was 68 % after the first procedure increasing to 93 % after repeat biopsies. In a subgroup of 20 patients from the Multicenter GCM Registry, endomyocardial biopsy reached a sensitivity of 80-85 %, but neither the number of procedures nor the number of samples per procedure was reported. If GCM involves the myocardium only locally (see Figure 3) the risks of sampling normal heart muscle increases. The use of contrast-enhanced MRI and/or PET helps identify the target areas for biopsies.

The differential diagnosis between GCM and isolated cardiac sarcoidosis depends solely on the histopathology of the myocardium. We were careful to exclude patients with any granulomatous changes at microscopy to avoid mixing sarcoid heart disease into our
study population. The Multicenter GCM Study Group also initially required absence of granulomas for the diagnosis of GCM1 but later considered some granuloma formation compatible with GCM provided the extent of myocardial necrosis was out of proportion to the degree of granulomatous changes.3,5

The 1997 report by the Multicenter GCM Study Group established the gloomy prognosis of the disease: out of 63 patients, 89\% either died or underwent transplantation with a median transplant-free survival of only 5.5 months from symptom onset.1 On the other hand, combined immunosuppression, but not corticosteroids alone, appeared to prolong survival compared with no immunosuppression.1 In the present study, all 26 patients with biopsy-diagnosed GCM received double- or triple drug immunosuppression with prednisone, azathioprine, and cyclosporine as the main components (Table 1). Small as it is, ours is the largest series hitherto pertinent to combined immunosuppression. With 1 death and 8 transplantations over follow-ups from 0.3 to 90.3 months the estimated transplant-free survival 77\% (56-90\%) at 1 year, 63\% (42-81\%) at 2 years of diagnosis. Importantly, all patients were listed for a cardiac transplant within 9 months. Of the 8 patients, 7 (88\%) were transplanted within 1 year of diagnosis, the median time from diagnosis being 9 months (range 0.3 – 15 months). This agrees well with findings in the Multicenter GCM Registry where transplantations were done a median of 6 months after onset of symptoms.1 The potential of combined immunosuppression to alleviate myocardial inflammation in GCM was shown by the prospective Multicenter GCM Treatment Trial5 where 11 patients received corticosteroids and cyclosporine, and 9 of them also muromonab, in a standard protocol. Though falling short as a controlled trial, the study showed that the treatment reduced myocardial inflammation and necrosis from baseline to 4-week on-treatment endomyocardial biopsies.5 The actual 1-year transplant free survival was 73 \% (8/11 patients) but the patients were old for GCM (mean age 60 years) and represented the milder spectrum of the disease.5
There are no good data to guide immunosuppression for long-term maintenance of
remission in GCM. Yet, continued treatment appears important since cessation of immuno-
suppression may lead to a fatal disease relapse. Our practice has been to maintain immuno-
suppression with cyclosporine and azathioprine with, or preferably without, a small dose of
prednisone. Our long-term treatment is in many ways reminiscent of posttransplantation im-
munosuppression without routine surveillance biopsies.

Serious ventricular tachyarrhythmias were common both as the presenting manifesta-
tion (22%) and during follow-up (65%). Further, all 5 fatalities were considered arrhythmic
and 2 of the 10 transplantations were done for failure to control recurrent VTs. The high fre-
quency and clinical importance of ventricular tachyarrhythmias was seen also in the Multi-
center GCM Registry where sustained, refractory VT were seen in almost one half of patients
during the course of their illness. Still, only 12% of the registry patients had received an
ICD, although the rate was not specified for the biopsy-diagnosed subgroup. In our series,
(56% (18/32) of the total group and) 69%, (18/26) of the biopsy-diagnosed patients had an
ICD implanted. It may be that arrhythmias respond poorly to immunosuppression in GCM
because, as in cardiac sarcoidosis, they are related to myocardial scars rather than to active
inflammation.

We have described here the largest series hitherto of patients with GCM on combined
immunosuppression. Two thirds of our patients achieved a partial clinical remission charac-
terized by freedom from severe heart failure but continuing susceptibility to ventricular tach-
yarrhythmias. Although the outlook of GCM on combined immunosuppression thus looks
less grim than usually thought the present data are at best suggestive and there remain many
deficiencies our knowledge about GCM. Future challenges include defining the optimal im-
munosuppressive regimens for early and maintenance treatments, identifying the most im-
formative markers for follow-up of disease activity, and finding the best methods to control and prevent life-threatening tachyarrhythmias.

Acknowledgements

We want to acknowledge the colleagues and staff of the Department of Cardiology at Helsinki University Central Hospital.

Sources of Funding

This study was supported by the Finnish Foundation for Cardiovascular Research and Finnish government grant for medical research (EVO).

Disclosures

None.

References

Table 1. Immunosuppressive treatment of the 26 patients with biopsy-diagnosed GCM.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroid + Azathioprine + Cyclosporine</td>
<td>17 (65%)</td>
</tr>
<tr>
<td>Corticosteroid + Azathioprine</td>
<td>4 (15%)</td>
</tr>
<tr>
<td>Corticosteroid + Azathioprine + Muromonab + Gammaglobulin</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Corticosteroid + Azathioprine + Mycophenolate mofetil</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>Corticosteroid + Cyclosporine + Mycophenolate mofetil</td>
<td>2 (8%)</td>
</tr>
<tr>
<td>Corticosteroid + Cyclosporine + Azathioprine/Methotrexate*</td>
<td>1 (4%)</td>
</tr>
</tbody>
</table>

*Azathioprine was replaced with methotrexate after 3 weeks of treatment due to pancreatic irritation.
Table 2. Dosing of the key immunosuppressive drugs from start to 48 months of treatment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Duration of treatment, months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start 3 6 12 18 24</td>
</tr>
<tr>
<td></td>
<td>36 48</td>
</tr>
<tr>
<td>Prednisone, mg</td>
<td></td>
</tr>
<tr>
<td>n/N</td>
<td>23/23* 20/20 20/20 19/19 14/15 8/12 5/11 2/5</td>
</tr>
<tr>
<td>Azathioprine, mg</td>
<td>100 (50,150) 100 (50,150) 100 (0,150) 100 (25,150) 100 (25,150) 100 (25,150) 100 (25,150) 100 (25,150)</td>
</tr>
<tr>
<td>n/N</td>
<td>21/23* 17/20 17/20 16/19 12/15 11/12 7/11 5/5</td>
</tr>
<tr>
<td>Cyclosporine dose, mg</td>
<td>175 (0,400) 150(125,300) 150(100,250) 150(75,250) 150(0,225) 150 (75,225) 150 (100,150) 125 (100,150)</td>
</tr>
<tr>
<td>Cyclosporine plasma**, μg/l</td>
<td>144 (144,216)132 (80,221)104 (73,189)102 (53,183) 86 (68,111) 85 (69,153) 82 (74,124) 87 (81,108)</td>
</tr>
<tr>
<td>n/N</td>
<td>19/23* 16/20 15/20 14/19 12/15 7/12 5/11 2/5</td>
</tr>
</tbody>
</table>

The data are median and range. If prednisolone was used it was expressed as equipotent dose of prednisone.

n=number of patients on a drug, N=total number of patients on follow-up

*Detailed treatment data on 3 patients was unavailable.

**Cyclosporine assay was changed from radioimmunoassay to chemiluminescent microparticle immunoassay (Architect) at the end of 2008. This results in measurement variation <5% in the plasma concentration range of cyclosporine seen in this study.
Table 3. Characteristics of individuals with and without an outcome event during treatment (death, transplantation) in the subgroup of GCM patients receiving combined immunosuppression. One patient received only 2 weeks of immunosuppressive treatment prior to an event and was thus excluded from treatment analysis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients with an event n= 9</th>
<th>Patients without an event n = 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>50 (29-70)</td>
<td>50 (31-66)</td>
</tr>
<tr>
<td>Sex, m/f</td>
<td>2 / 7</td>
<td>5 / 12</td>
</tr>
<tr>
<td>Mode of presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>heart failure</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>VT</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Symptoms to treatment, months</td>
<td>1 (0.3-8.0)</td>
<td>5 (0.3-16.0)</td>
</tr>
<tr>
<td>LVEF at diagnosis</td>
<td>33 (20-60)</td>
<td>35 (20-61)</td>
</tr>
<tr>
<td>LVEF during follow-up</td>
<td>26 (15-36)</td>
<td>45 (26-69)</td>
</tr>
<tr>
<td>Lowest proBNP, ng/l¹</td>
<td>2300 (1687-3063)</td>
<td>854 (128-3528)</td>
</tr>
<tr>
<td>Highest proBNP, ng/l²</td>
<td>8236 (4945-15519)</td>
<td>4272 (528-16804)</td>
</tr>
<tr>
<td>TnT at the time of diagnosis, ng/l</td>
<td>0.64 (0.9-73)</td>
<td>0.1 (0.2-3)</td>
</tr>
<tr>
<td>at 6 months⁴</td>
<td>107 (99-146)</td>
<td>104 (73-189)</td>
</tr>
<tr>
<td>below median (120)</td>
<td>5/6</td>
<td>7/14</td>
</tr>
<tr>
<td>Prednisone, mg (starting dose) (at 6 months)³</td>
<td>60 (40-80)</td>
<td>60 (40-80)</td>
</tr>
<tr>
<td></td>
<td>10 (10-40)</td>
<td>20 (5-60)</td>
</tr>
<tr>
<td>Aza, mg (maintenance dose)⁶</td>
<td>100 (50-150)</td>
<td>100 (50-150)</td>
</tr>
<tr>
<td>High-dose steroids</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Data presented as number of patients or median and range.
LVEF, left ventricular ejection fraction; VT, ventricular tachycardia; pro-BNP, Brain natriuretic peptide; TnT, troponin T; Cya, cyclosporine; Aza, azathioprine.

Detailed treatment data on 3 patients was unavailable.

¹ The lowest measured pro-BNP over the follow-up.
² The highest measured pro-BNP over the follow-up.
³ One patient received only 2 weeks of immunosuppressive treatment.
⁴ At 6 months, 15/23 on cyclosporine, detailed data on treatment for 3 patients was unavailable. Data on 3/6 and 12/14 in patients with and without events.
⁵ At 6 months, 20/20 on steroids. Data on 6/6 and 14/14 patients with and without events at 6 months.
⁶ At 6 months, 17/20 on azathioprine. Data on 5/6 and 12/14 patients with and without events.
Figure Legends

Figure 1. 47-year-old female with multifocal ventricular premature complexes and left ventricular aneurysm. In echocardiography, the left ventricular ejection fraction was > 50%. Left ventricular cineangiography in diastole (A) and in systole (B) demonstrating an apical aneurysm. C. 18F-FDG PET image demonstrates an increased FGD uptake suggesting active inflammation at the opening of the left ventricular aneurysm. EMB from this site showed active GCM.

Figure 2. Summary of patient selection and classification. EMB indicates endomyocardial biopsy.

Figure 3. Autopsy samples from a 29-year-old female that presented with complete heart block and normal left ventricular function in echocardiography. She died five years later due to VF. A. LV septum shows macroscopic evidence of scarring. Arrow points to an area of extensive scarring. B. Large number of histologic samples from the various parts of the myocardium demonstrated that inflammation due to GCM was confined to interventricular septum. Arrow points to a giant cell, a hallmark of giant cell myocarditis. This case demonstrates that GCM can be localized to a specific region in the heart and can be dormant for years.

Figure 4. Kaplan–Meier curves for survival free of major adverse cardiac event (death, transplant) in all 32 patients with GCM.

Figure 5. Kaplan–Meier curves for survival free of major adverse cardiac event (death, transplant) from the time of diagnosis in 26 GCM patients diagnosed by endomyocardial or surgical biopsies and treated with immunosuppressive medications.
Figure 1
Figure 2

Excluded, do not fulfill GCM criteria (n=4)

Histologically verified GCM (n=32)

Diagnosed by EMB or surgical biopsy (n=26)

Long-term remission (n=17)

Transplant or death (n=9)

Post cardiac transplantation or autopsy (n=6)
Figure 3
Event-free survival

0.0 0.2 0.4 0.6 0.8 1.0

Survival

Survival free of transplant

Time (months)

0 20 40 60 80 100

Figure 4
Figure 5
Diagnosis, Treatment, and Outcome of Giant Cell Myocarditis in the Era of Combined Immunosuppression

Riina Kandolin, Jukka Lehtonen, Kaisa Salmenkivi, Anne Räisänen-Sokolowski, Jyri Lommi and Markku Kupari

Circ Heart Fail. published online November 13, 2012;
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/early/2012/11/13/CIRCHEARTFAILURE.112.969261

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Heart Failure_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Heart Failure_ is online at:
http://circheartfailure.ahajournals.org//subscriptions/