Cardiac Insulin Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure Following Pressure Overload Hypertrophy

Zhang et al: Energetic Deficit Precedes Heart Failure

Liyan Zhang, PhD; Jagdip S. Jaswal, PhD; John R. Ussher, PhD; Sowndramalingam Sankaralingam, PhD; Cory Wagg, Michael Zaugg, MD; Gary D. Lopaschuk, PhD

Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada

Correspondence to:
Gary Lopaschuk
423 Heritage Medical Research Center
University of Alberta
Edmonton, Canada
T6G 2S2
Tel: (780) 492-2170
Fax: (780) 492-9753
Email: gary.lopaschuk@ualberta.ca

DOI: 10.1161/CIRCHEARTFAILURE.112.000228

Journal Subject Codes: Atherosclerosis:[140] Energy metabolism, Atherosclerosis:[148] Heart failure - basic studies
Abstract

Background—Cardiac hypertrophy is accompanied by significant alterations in energy metabolism. Whether these changes in energy metabolism precede and/or contribute to the development of heart failure in the hypertrophied heart is not clear.

Methods and Results—Mice were subjected to cardiac hypertrophy secondary to pressure-overload as a result of an abdominal aortic constriction (AAC). The rates of energy substrate metabolism were assessed in isolated working hearts obtained 1-, 2-, and 3-wks following AAC. Mice subjected to AAC demonstrated a progressive development of cardiac hypertrophy. In vivo assessment of cardiac function (via echocardiography) demonstrated diastolic dysfunction by 2-wk (20% increase in E/E'), and systolic dysfunction by 3-wk (16% decrease in %EF). Marked cardiac insulin-resistance by 2-wk post-AAC was evidenced by a significant decrease in insulin-stimulated rates of glycolysis and glucose oxidation, and plasma membrane translocation of glucose transporter 4 (GLUT4). Overall ATP production rates were decreased at 2- and 3-wk post-AAC (by 37% and 47%, respectively), due to a reduction in mitochondrial oxidation of glucose, lactate, and fatty acids that was not accompanied by an increase in myocardial glycolysis rates. Reduced mitochondrial complex V activity was evident at 3-wk post AAC, concomitant with a reduction in the ratio of phosphocreatine (PCr) to ATP.

Conclusions—The development of cardiac insulin-resistance and decreased mitochondrial oxidative metabolism are early metabolic changes in the development of cardiac hypertrophy, which create an energy deficit that may contribute to the progression from hypertrophy to heart failure.

Key Words: cardiac hypertrophy, abdominal aortic constriction, energy metabolism, myocardial lipid accumulation, electron transport chain, cardiac insulin resistance
Sustained cardiac remodeling in the form of hypertrophy is a powerful predictor of heart failure (HF). Alterations in cardiac energy substrate metabolism are also recognized as important hallmarks of the remodelling process. A decline in fatty acid utilization, due to a reduction in the expression of genes involved in fatty acid metabolism, has been proposed to represent a key event in the development of HF. The decrease in fatty acid oxidation is accompanied by a reversion to the fetal metabolic profile, and is characterized by an increased reliance on glycolysis for ATP generation. A reduction in fatty acid oxidation without a concomitant increase in carbohydrate (glucose or lactate) oxidation to support ATP production can lead to an energy deficit in the failing heart. Such an energy deficit has been suggested to correlate with overall disease severity.

The high energy demands of the heart are primarily met by the mitochondrial oxidation of fatty acids and carbohydrates (glucose and lactate). The amount of ATP produced depends on overall mitochondrial oxidative capacity, oxygen supply to the myocardium, and the supply of substrates for oxidative metabolism. In hypertrophy and HF, a decrease in high energy phosphates in the heart has been observed. However, it is not clear whether this is due entirely to a decrease in mitochondrial oxidative capacity, a switch in energy substrate preference, or a less efficient use of energy. The question also arises as to whether these metabolic changes are a consequence of HF per se, or whether they are an early event that may contribute to the development and progression of HF.

Glucose utilization in the heart is highly dependent on insulin, and any decrease in responsiveness of the heart to insulin can create a state of “cardiac insulin resistance.” Insulin facilitates glucose entry by inducing the translocation of GLUT4 from intracellular storage vesicles to the sarcolemmal membrane. Decreasing GLUT4 availability exacerbates cardiac
insulin-resistance, and cardiac insulin-resistance due to GLUT4 deficiency is associated with the development of HF9. As a result, myocardial insulin-resistance is an established risk factor for the development of cardiovascular diseases1,10. Chronic hyperinsulinemia associated with whole body insulin-resistance can stimulate angiotensin II-induced pathological hypertrophy11. In addition, insulin resistance is often observed in patients with hypertension-induced hypertrophy 12. Since the development of cardiac insulin-resistance can potentially contribute to the development of HF, it is important to understand if cardiac insulin-resistance occurs early during the development of HF.

The aims of this study were to characterize the profile of energy substrate metabolism in the presence and absence of insulin in the normal and hypertrophied heart. Our hypothesis is that altered energy substrate metabolism is an early event that occurs with the development of cardiac hypertrophy induced by pressure-overload due to an abdominal aortic constriction (AAC) in mice. These early changes will decrease myocardial energetics that contributes to the development of hypertrophy-induced contractile dysfunction. Thus, optimizing energy metabolism may be an approach to slowing HF progression.

Methods

\textbf{Animals:} All mice received care and treatment according to the Canadian Council on Animal Care, and all protocols on mice were approved by the University of Alberta Health Sciences Animal Policy and Welfare Committee.

\textbf{Experimental protocol:} Male C57BL/6 mice (n=66, 8-wk of age) were randomly assigned to undergo either a sham surgical procedure (n=25), or an abdominal aortic constriction (AAC,
Echocardiography was performed at 1-, 2- or 3 wk post-surgery. Following echocardiography, glucose tolerance tests were performed at the 2- or 3- wk post-AAC in mice from the respective groups (n=10 for the sham group and for the AAC group). Subsequently, hearts were isolated and perfused as working preparations as described below.

Abdominal Aortic Constriction Procedure: Detailed methodology is described in the online-only Expanded Methods supplement.

Echocardiography and Tissue Doppler Imaging: Mice were anesthetized with 0.75% isoflurane for the duration of the transthoracic echocardiographic procedure, which was performed using a Visualsonic Vevo 700 instrument as previously described\(^{13}\).

Isolated Working Heart Perfusions: Hearts were aerobically perfused with Krebs-Henseleit solution containing 1 mM lactate, 5 mM glucose, 0.8 mM palmitate pre-bound to 3% bovine serum albumin, and 2.5 mM free Ca\(^{2+}\), in the absence or presence of 100 µU/ml insulin for measurement of cardiac function and energy metabolism as previously described\(^{14}\).

Measurement of high energy phosphates: Neutralized perchloric acid extracts from frozen ventricular tissue (n= 5/ group) were used for measurements by of high energy phosphates using high performance of liquid chromatography (HPLC, Waters)\(^{15}\). Values of ATP and phosphocreatine (PCr) obtained from HPLC analysis was used to calculate the PCr/ATP ratio. Values of PCr and cytosolic creatine (Cr) obtained from HPLC analysis were used for calculating cytosolic ADP and AMP. To calculate the cytosolic contents of ADP and AMP, the
equilibrium reactions PCr+ADP+H\textsuperscript+⇌ATP+Cr with a Keq=1.66x109, whereas 2ADP⇌ATP+AMP with a Keq=1.05 were used to calculate ADP and AMP, respectively, as described previously16.

Glucose tolerance test (GTT): At 2- and 3-wk post-surgery mice from the sham (n=10) and AAC (n=10) groups were fasted for 16h. After obtaining a fasting blood sample, glucose (2g/kg body weight) was administered orally via gastric lavage. Blood glucose was measured with Accu Check Advantage (Roche) at 15-mins interval.

Assay of Triacylglycerol (TAG) Content: Hearts perfused with \([9,10-3\text{H}]\)-palmitate (n=5/group) were subjected to lipid extraction as previously described7. Based on the specific activity of \([9,10-3\text{H}]\)-palmitate in the perfusate, the amount of palmitate incorporation into the myocardial TAG pool was calculated.

Assay of Myocardial Glycogen Content: Ventricular tissue from hearts perfused with \([5-3\text{H}]\)-glucose (n=5/group) was subjected to glycogen extraction as previously described17. Based on the specific activity of \([3\text{H}]\)-glucose in the perfusate, the rate of glucose incorporation into the myocardial glycogen pool over the course of the 60 min perfusion was calculated as \(\mu\text{mol/g dry wt/hr}\).

Activity of Hexokinase, Citrate Synthase, \(\beta\)-Hydroxyacyl CoA Dehydrogenase, Pyruvate Dehydrogenase, Mitochondrial Electron Transport Chain (ETC) Complexes and Superoxide Dismutase: All activities (n=5/group) were determined based on continuous kinetic changes of
absorbance over 2-5 min, as described previously13, 18, 19, 20. Determination of pyruvate dehydrogenase (PDH) activity was performed as described previously21.

Western Blotting: Immunoblotting was performed (n=5/group) by subjecting equal amounts of protein to SDS-PAGE as described previously7. Bound antibody was visualized by incubation with enhanced chemiluminescent substrate, while Image J was used for densitometric analysis.

Statistical Analysis: Data are presented as the mean ± SEM. Differences between two groups (sham and AAC) were evaluated using an unpaired, 2-tailed Student’s \(t \) test. Differences were considered significant when \(P < 0.05 \).

Results

Cardiac hypertrophy occurs concomitantly with the development of diastolic dysfunction: To characterize the induction of cardiac hypertrophy in mice subjected to our AAC protocol, LV mass was assessed by echocardiography at 1-, 2-, and 3-wk post-AAC. In comparison to sham, increased LV mass was not seen at 1-wk post-AAC, but was observed at 2-wk and further progressed at 3-wk post-AAC. (Figure 1A). Echocardiographic findings were confirmed by direct measurements of heart weight to body weight ratios at the time of sacrifice (Figure 1B). LV wall thickness, as reflected by the posterior wall dimension in diastole (LVPWD) (Figure 1C), and the interventricular septal dimension (IVSD) (Figure 1D), was gradually increased in AAC hearts. Cardiac function was evaluated by combining mitral inflow and tissue Doppler technologies. Ventricular filling velocity was unchanged in all hearts, expressed as the ratio of mitral inflow E and A wave (E/A) (data not shown). However, myocardial motion (as indicated
by E/E’ (Figure 1E) and E’/A’ (Fig 1F) was significantly impaired 2-wk post-AAC, indicative of diastolic dysfunction. In contrast, a decrease in percent ejection fraction (Figure 1G) and fractional shortening (Figure 1H) were only evident in mice 3-wk post-AAC, demonstrating a time-dependent progression from diastolic dysfunction to systolic dysfunction. Cardiac function was also assessed in isolated working hearts. Rates of cardiac output (CO), aortic outflow (AO), and contractile performance (estimated as the product of heart rate and peak systolic pressure, RPP) were used as the indicators of the contractile state of the heart. A decrease in CO, AO (Figure 2A), and RPP (Figure 2B) at both 2- and 3-wk post-AAC were observed, indicative of contractile abnormalities relative to sham. In addition, a mild decrease in cardiac power was observed 1-wk post AAC (Figure 2C), and progressively decreased further by 2- and 3-wk post AAC relative to sham.

Mitochondrial oxidative metabolism decreases while cardiac insulin-resistance occurs during the early development of diastolic HF: To investigate what alterations in cardiac energy substrate metabolism occur during the development of cardiac hypertrophy and progression to early HF, isolated working heart perfusions were performed 1-, 2- and 3-wk post-AAC. No differences in cardiac energy metabolism were observed 1-wk post-AAC (data not shown). At 2-wk post-AAC, basal rates of glycolysis (Figure 3A), glucose oxidation (Figure 3B), lactate oxidation (Figure 3C), and fatty acid oxidation (Figure 3D) were not significantly different from the sham hearts. In the presence of insulin, a robust increase in glycolysis and glucose oxidation was observed in hearts from the sham animals (Figure 3A-B). However, this insulin response was blunted in hearts 2-wk post-AAC, demonstrating the presence of cardiac insulin-resistance. As expected, insulin decreased fatty acid oxidation in hearts, but no significant difference was
seen between sham and 2-wk post-AAC hearts. By 3-wk post-AAC, glycolysis was decreased both in the presence and absence of insulin (Figure 3E). The mitochondrial oxidation of glucose (Figure 3F), lactate (Figure 3G), and palmitate (Figure 3H) was also decreased, particularly in the presence of insulin.

Compared to sham, TCA cycle activity was decreased by 30% 2-wk post-AAC (Figure 4A), and decreased further by 3-wk post-AAC, (Figure 4B). This decrease in mitochondrial TCA cycle activity was not compensated by an increase in glycolysis, resulting in significant decreases in ATP production by 2-wk (Figure 4C) and 3-wk post-AAC (Figure 4D). The contribution of the various pathways to overall ATP production did not vary significantly either 2-wk or 3-wk post-AAC relative to sham, although the presence of insulin did increase the contribution of glucose oxidation to ATP production (Figure 4E-F). Of interest, glycolysis was a minor contributor to overall ATP production in AAC hearts, and did not increase as the severity of hypertrophy increased.

Activation of AMPK was observed in hearts at both 2- and 3-wk post-AAC (Figure 5A). However, the overall energy-compromised state relative to sham was only observed at 3-wk post-AAC, as reflected by an increase in the ratio of AMP/ATP (Figure 5B), ADP/ATP (Figure 5C), and a decrease in PCr/ATP (Figure 5D). The presence of cardiac insulin-resistance in AAC hearts led us to determine if it was accompanied by a systemic insulin-resistance. Of interest, no difference in glucose tolerance was observed at 2- (Figure 5E) and 3-wk post-AAC (Figure 5F) compared to the sham mice, suggesting that impaired insulin action in the hypertrophied hearts occurs prior to the development of systemic insulin-resistance. Coronary flow in the presence of insulin was unaffected at 2- and 3-wk post-AAC (Figure 5G) relative to sham, indicating that impaired insulin action on energy metabolism was not accompanied by changes in insulin-
mediated vascular effects on coronary flow post-AAC, and was independent of alterations in substrate (i.e. glucose) delivery to the myocardium.

Translocation of GLUT4, glycogen metabolism and triacylglycerol (TAG) metabolism, following AAC: To understand the mechanism underlying the impaired myocardial insulin action, we investigated membrane translocation of myocardial GLUT4. Although the total expression of GLUT4 at 2-wk post-AAC was not affected relative to sham (Figure 6A), sarcolemmal GLUT4 content was decreased, while cytosolic GLUT4 content was increased in hypertrophied hearts. This impaired GLUT4 translocation in the hypertrophied hearts is indicative of potential decreases in glucose uptake, which is reflected by decreased glycogen content (Figure 6B), and decreased glucose incorporation into the myocardial glycogen pool (Figure 6C). Combined with the decrease in glycolysis (Figure 3A and 3E), these data are consistent with the development of cardiac insulin resistance. In addition, hexokinase activity and pyruvate dehydrogenase (PDH) (the rate-limiting enzyme for carbohydrate oxidation) activity remained normal in the hypertrophied hearts (Supplemental Table).

Relative to sham, TAG levels were significantly increased in hearts 2- and 3-wk post-AAC (Figure 6D), as was fatty acid incorporation into TAG during the perfusion (Figure 6E). This suggests that sarcolemmal fatty acid uptake was not impaired in the hypertrophied hearts, and that the observed decrease in fatty acid oxidation in the hypertrophied hearts was accompanied by preferential partitioning of fatty acids into the endogenous TAG pool, as opposed to mitochondrial oxidative metabolism. The content of malonyl CoA, an endogenous inhibitor of mitochondrial long chain fatty acid uptake, was unchanged 3-wk post- AAC (Supplemental Table), suggesting that the decrease in fatty acid oxidation rates in early HF are
not due to alterations in malonyl CoA control of mitochondrial fatty acid uptake. Rather, a decrease in the fatty acid oxidative enzyme, β-hydroxyacyl CoA dehydrogenase, may have contributed to decreased fatty acid oxidation in hearts 3-wk post-AAC (Figure 6F).

Mitochondrial ETC changes during the development of cardiac hypertrophy: Apart from the reduced influx of energy substrates for mitochondrial oxidation, decreased ATP production in AAC hearts could also be a result of defects in the TCA cycle, mitochondrial biogenesis, or the ETC. However, neither citrate synthase activity (Figure 7A), nor the expression of mitochondrial biosynthesis markers, such as nuclear PGC-1α (Figure 7B) and nuclear ERRα (a downstream target of PGC-1α) (Figure 7C), were altered in mice 2-wk post-AAC compared to sham. In contrast, the activities of mitochondrial complex I (Figure 7D) and complex II (Figure 7E) were significantly decreased 2-wk post-AAC, whereas the activities of complex V (Figure 7F) were unchanged. Thus, alterations in mitochondrial ETC may, in part, have contributed to the decrease in mitochondrial ATP production observed in the presence of cardiac hypertrophy. Decreased nuclear content of both PGC-1α (Figure 7B) and ERRα (Figure 7C) were evident 3-wk post-AAC relative to sham. However, an increase in activities of complex I (Figure 7D) and complex II (Figure 7E), but a decrease in complex V activity (Figure 7F) was observed 3-wk post-AAC. These results suggest that a combination of defects in mitochondrial ETC activity and mitochondrial biosynthesis exacerbate energy deficiency.

Defects in mitochondrial ETC activity have the potential to increase the levels of reactive oxygen species, and can lead to ventricular dysfunction22, 23. However, neither cytosolic superoxide dismutase (SOD), nor mitochondrial SOD activity (Figure 8A-B) and its protein expression (Figure 8C) were altered in the hypertrophied hearts.
The expression of nuclear hypoxia-inducible factor 1α (HIF-1α), a transcription factor important in up-regulating enzymes involved in glycolysis, was decreased (Figure 8D) at 3-wk post-AAC compared to sham, suggesting that diastolic dysfunction is not associated with alterations in HIF-1α, but that decreased HIF-1α expression may be associated with the transition from diastolic to early systolic dysfunction.

Discussion

This study demonstrates several key issues. First, cardiac hypertrophy was evident 2-wk post-AAC, and was accompanied by the development of diastolic dysfunction. Accompanying the development of diastolic dysfunction in the hypertrophied heart was a marked reduction in insulin-stimulated glucose utilization, and impaired plasma membrane translocation of GLUT4. As diastolic dysfunction progressed to systolic dysfunction further decrements in glycolysis, and insulin stimulated glycolysis and glucose oxidation became evident. Second, a depression of fatty acid oxidation occurred in conjunction with a transition from diastolic dysfunction to systolic dysfunction, in which a reduction in mitochondrial complex V activity was seen, and the ratio of PCr/ATP was decreased. Taken together, our data are consistent with alterations in energy substrate metabolism leading to a depression of overall mitochondrial oxidative metabolism that contributed to the progression from cardiac hypertrophy to heart failure.

Of importance is the demonstration that insulin-stimulated glucose oxidation is suppressed in the hypertrophied heart with underlying diastolic dysfunction at 2-wk post AAC. This cardiac insulin-resistance precedes any alterations in basal energy substrate metabolism, and it is not associated with systemic glucose intolerance. Therefore, impaired myocardial insulin action is an early event in the development of cardiac hypertrophy. Impaired insulin-stimulated
myocardial GLUT4 translocation at 2-wk post-AAC suggests a potential decrease in glucose uptake, which may contribute to impaired diastolic function. This is also supported by previous studies indicating that targeted myocardial-GLUT4 deficiency induces cardiac hypertrophy, and that insulin-resistant cardiomyopathy is accompanied by decreased GLUT4/GLUT1 ratios25. In addition, short-term high fat feeding-induced insulin resistance in mice predisposes to adverse LV remodeling26, in which insulin-stimulated myocardial glucose uptake was significantly impaired26. It is unclear whether myocardial insulin-resistance is a cause or consequence of LV remodeling. Clinical evidence suggests that cardiac hypertrophy is associated with an increase in insulin-resistance27. Thus, decrements in membrane GLUT4 at 2-wk post AAC, at least in part, may contribute to diminished rates of glucose oxidation in the hypertrophied heart with diastolic dysfunction. Our finding that glycolysis is decreased in AAC hearts appears to be discordant with previous reports that glycolysis is elevated in the hypertrophied heart17, 28. Comparisons between studies are difficult, due to differences in experimental protocols, such as different animal models resulting in different magnitudes of pressure overload, different phenotypic factors, or varying degrees of afterload, and variation in the inclusion of insulin during perfusion29. Despite the observation that promoting glucose utilization in the setting of established HF does have salutary effects30, directly targeting glucose supply may not be physiologically feasible. Whether targeting cardiac insulin-resistance could attenuate the progression from diastolic dysfunction to HF, remains to be assessed. Thus, focusing on restoration of fatty acid oxidation during the development of cardiac hypertrophy may be a preferred approach.

A reduction in fatty acid oxidation has been repeatedly demonstrated in models of cardiac hypertrophy, including transverse aortic constriction (TAC) in both the mouse28 and rat31. Time-
dependent alterations in TAC-rats reveals that fatty acid oxidation is decreased early during hypertrophy development when heart function is near-normal with preserved wall stress and E/E+31. A decreased fatty acid oxidation in our AAC mice was accompanied by the development of systolic dysfunction, whereas Kölwicz et al. showed a reduced fatty acid oxidation in mice subjected to TAC that had diastolic dysfunction28. It should be pointed out that they were primarily examining alterations in fatty acid oxidation in established hypertrophied hearts, and they did not examine overall energetic status or whether cardiac insulin-resistance was occurring in TAC-mice. In contrast, we were interested in examining the energetic changes that occurred during the development of cardiac hypertrophy, as well as whether cardiac insulin-resistance occurred. The common observation between our study and the Kölwicz et al. study is that reduction of fatty acid oxidation occurred in conjunction with a decreased PCr/ATP ratio, suggesting that decreased fatty acid oxidation is associated with the energy deficit. Whether enhancing fatty acid oxidation would attenuate the development of cardiac hypertrophy and preserve cardiac function is still controversial. However, it is important to recognize the occurrence of decreased fatty acid oxidation in association with the development of cardiac hypertrophy. Improving cardiac function through restoration of fatty acid oxidation with peroxisome proliferator-activated receptor-\(\alpha\) (PPAR\(\alpha\)) agonists in hypertrophied and failing hearts has not provided beneficial results32, as the broad effects of PPAR\(\alpha\) agonists on lipid metabolism may hamper its impact on recovery of cardiac function28, 32. Thus, exploring the changes of myocardial TAG in the hypertrophied heart could help our understanding in designing the appropriate therapeutic strategy towards improving cardiac function. In the current study, accompanying the decrease in fatty acid \(\beta\)-oxidation was an increase in myocardial TAG content, and an increased incorporation of exogenous fatty acids into the myocardial TAG pool.
(effects which were evident 2-wk post-AAC). However, the role of alterations in TAG content remains to be resolved as both increased \(^{33}\) and decreased \(^{34, 35}\) myocardial TAG content have both been reported in pressure overload or heart failure.

Despite these selective differences regarding substrate utilization, decreased respiratory capacity in TAC-rat \(^{31}\) and reduced PCr/ATP in TAC-mice \(^{28}\) are also observed in AAC-mice. It has been shown that the level of complex V protein is significantly correlated with PCr/ATP in the postinfarcted heart \(^{36}\). Hence, it is tempting to speculate that a reduction of mitochondrial complex V activity at 3-wk post-AAC contributed to an increase in ADP/ATP, and therefore a decrease in PCr/ATP ratio. However, the present data do not prove a causal relationship between the decreased complex V activity and the increased levels of ADP/ATP or decreased PCr/ATP ratios. Alternative explanations also need to be considered.

Limitation: Our study design is such that the studies cannot distinguish whether cardiac insulin-resistance is a cause or a consequence of diastolic dysfunction in hypertrophied heart. Such insights may ultimately be obtained from studies that employ genetic or pharmacological manipulation of the implicated energy utilization pathways during the evolution of experimental pressure overload hypertrophy. Furthermore, although we assessed diastolic function via estimates of LV filling pressure \((E/E')\) and the ratio of early and late filling velocities, we did not assess chamber stiffness in these studies. Also, in our sham-operated controls, we observed larger than expected time-dependent changes in substrate utilization (Figure 3), and this may have affected some of our statistical comparisons. Finally, our study was performed in hypertrophied mouse hearts that transition rapidly from a compensated state to isolated diastolic dysfunction and then mild systolic dysfunction. In humans, hypertension-induced diastolic abnormalities develop over years or decades, and are typically accompanied by chamber
stiffening37. It therefore needs to be recognized that our model of diastolic dysfunction in the mouse may not completely recapitulate the diastolic dysfunction seen in humans.

In conclusion, cardiac insulin resistance is an early event that accompanies the development of cardiac hypertrophy and diastolic dysfunction in hypertrophied hearts as a result of an AAC. A time-course of events provides support that the primary defect in mitochondrial energy metabolism is a specific defect in fatty acid oxidation. The metabolic perturbations elicited in the hypertrophied heart progressively worsen during the transition to systolic dysfunction and suggest that: 1) limited oxidative metabolism of carbohydrates and fatty acids impairs the generation of reducing equivalents for the ETC, and that 2) alterations in the ETC may further limit oxidative-phosphorylation, and hence contribute to the well-noted energetic deficiencies observed in the failing heart.

Sources of Funding

This study was supported by a grant from the Heart and Stroke Foundation of Alberta (HSFA) to GDL, and a HSFA grant to MZ.

Disclosures

GDL is an Alberta Heritage Foundation for Medical Research (AHFMR) Medical Scientist. LZ is a fellow of the AHFMR.

References

25. Domenighetti AA, Danes VR, Curi CL, Favakoro JM, Proietto J, Delbridge LM. Targeted GLUT-4 deficiency in the heart induces cardiomyocyte hypertrophy and impaired contractility linked with Ca(2+) and proton flux dysregulation. J Mol Cell Cardiol. 2010;48:663-672.

Figure Legends

Figure 1. Characterization of cardiac hypertrophy in mice subject to 1-, 2-, and 3-wk post AAC.

A, Left ventricle (LV) mass assessed by echocardiography.
B, Ratio of dry weight of LV mass to body weight for mice.
C, LV end diastolic posterior wall dimension (LVPWD).
D, Interventricular septal dimension (IVSD).
E, Ratio of early trans mitral flow velocity to early diastolic mitral valve annulus velocity (E/E’).
F, Ratio of early and late ventricular filling velocity measured by (E’/A’) by tissue Doppler imaging.
G, Ejection fraction (EF%).
H, Fractional shortening (% FS).
Values represent means ± SEM (n=10/group).
*p < 0.05, **p < 0.01, ***p<0.001, significantly different from sham group.

Figure 2. Cardiac contractile performance assessed by aerobic perfusion in mice subject to 1-, 2- and 3-wk of AAC.
A, Rates of cardiac output and aortic outflow.
B: Rate pressure product.
C, Cardiac power measured in isolated working hearts.
Values represent means ± SEM (n=10/group).
*p < 0.05, **p < 0.01, ***p<0.001, significantly different from sham group.

Figure 3. Cardiac energy metabolism in mice subjected to 2- and 3-wk of AAC.
A, E, Rates of glycolysis in the absence (-) or presence (+) of 100 μU/ml insulin.
B, F, Rates of glucose oxidation in the absence (-) or presence (+) of 100 μU/ml insulin.
C, G, Rates of lactate oxidation in the absence (-) or presence (+) of 100 μU/ml insulin.
D, H, Rates of palmitate oxidation in the absence (-) or presence (+) of 100 μU/ml insulin.
Values represent means ± SEM (n=5).
*p < 0.05, ***p < 0.001, significantly different from the corresponding sham group.
Figure 4. Cardiac TCA cycle activity and ATP production rates in mice subject to 2- and 3-wk of AAC. Hearts were obtained from sham and AAC mice 2-wk (A, C, E) or 3-wk (B, D, F) post-AAC. A, B, TCA cycle acetyl CoA production rates in the absence (-) or presence (+) of 100 μU/ml insulin. C, D, ATP production rates in the absence (-) or presence (+) of 100 μU/ml insulin. E, F, Percent contribution of individual carbon substrates to ATP production in the absence (-) or presence (+) of 100 μU/ml insulin. Values represent means ± SEM (n=5-10). *p < 0.05, **p < 0.01, significantly different from the corresponding sham group.

Figure 5. Phosphorylation of AMKP, high energy phosphates and glucose tolerance test (GTT) at 2- and 3-wk post AAC.

A, Representative blots of p-AMPK normalized to total AMPK at 2- and 3-wk post AAC. B, Ratio of AMP/ATP. C, Ratio of ADP/ATP. D, Ratio of PCr/ATP. E, GTT at 2-wk post AAC. F, GTT at 3-wk post AAC. G, Rates of coronary perfusate flow measured in the presence of insulin at 2- and 3wk post AAC. Values represent means ± SEM (n=5-10), *p < 0.05, **p < 0.01, significantly different from the corresponding sham group.

Figure 6. Alterations in cardiac GLUT4 translocation, triacylglycerol and glycogen content in mice subject to 2- and 3-wk post-AAC.

A, Representative immunoblots of GLUT4, and densitometric analyses of membrane GLUT4 (m-GLUT4) to caveolin-1, cytosolic GLUT4 (cy-GLUT4) to tubulin, and total tissue expression of GLUT4 (t-GLUT4) to tubulin. B, Myocardial glycogen content. C, Radiolabelled glycogen content during the one hour perfusion. D, Myocardial triacylglycerol (TAG) content. E, Incorporation of [3H]-palmitate into TAG. F, β-hydroxyacyl CoA dehydrogenase activity.
Values represent means ± SEM (n=5). *p < 0.05, **p < 0.01, significantly different from the corresponding sham group.

Figure 7. Alterations of cardiac mitochondrial capacity and electron transport chain activity 2- and 3-wk post-AAC.

A, Citrate synthase activity. B, Content of nuclear PGC-1α. C, Content of nuclear ERRα. D, Mitochondrial complex I activity. E, Mitochondrial complex II activity. F, Mitochondrial complex V (ATP-synthase) activity. Values represent means ± SEM (n=5). *p < 0.05, **p < 0.01, significantly different from the corresponding sham group.

Figure 8. Alterations in cardiac antioxidant capacity and the expression of nuclear HIF-1α 2- and 3-wk post-AAC.

A, Activity of cytosolic SOD. B, Activity of mitochondrial SOD. C, Protein expression of mitochondrial SOD. D, Protein expression of nuclear HIF-1α. Values represent means ± SEM (n=5). *p < 0.05, significantly different from the corresponding sham group.
Figure 1
Figure 2

(A) Cardiac output and aortic outflow over 3 weeks.

(B) Rate pressure product over 3 weeks.

(C) Cardiac power over time of perfusion.

Legend:
- sham
- AAC 1wk
- AAC 2wk
- AAC 3wk
Figure 3
Figure 4
Figure 5

(A) p-AMPK and t-AMPK levels in sham and AAC groups. **p < 0.01 vs sham 2wk.

(B) AMP/ATP levels in sham and AAC groups. **p < 0.01 vs sham 2wk.

(C) ADP/ATP levels in sham and AAC groups. **p < 0.01 vs sham 2wk.

(D) Pcr/ATP levels in sham and AAC groups. No significant differences observed.

(E) Plasma glucose levels over time. AAC 3wk shows a significantly lower glucose level compared to sham 3wk.

(F) Plasma glucose levels in sham and AAC groups over time. AAC 3wk shows a significantly lower glucose level compared to sham 3wk.

(G) Coronary flow with and without insulin. No significant differences observed.
Figure 6

B. Glycogen content (μmol/g dry wt) in sham and AAC 2wk and 3wk.

C. Glycogen from [3H]-glucose (μmol/g dry wt/hr) in sham and AAC 2wk and 3wk.

D. Total TAG content (μmol fatty acid/g dry wt) in sham and AAC 2wk and 3wk.

E. [3H]-palmitate into TAG (μmol fatty acid/g dry wt) in sham and AAC 2wk and 3wk.

F. β-hydroxyacyl-CoA dehydrogenase (μmol/g dry wt/min) in sham and AAC 2wk and 3wk.
Figure 7

A. Citrate synthase activity (μmol/g dry wt/min)

B. nPGC-1α/Lamin A

C. nERR α/Lamin A

D. Complex I activity (μmol mitochondrial protein/min)

E. Complex II activity (μmol mitochondrial protein/min)

F. ATP synthase activity (μmol mitochondrial protein/min)
Figure 8

A. Cytosolic SOD activity (U/mg cytosolic protein) over 2wk and 3wk for sham and AAC groups.

B. Mitochondrial SOD activity (U/mg mitochondrial protein) over 2wk and 3wk for sham and AAC groups.

C. Western blot images of Mn-SOD and Tubulin for sham and AAC groups at different time points.

D. Western blot images of nHIF-1α and Lamin A for sham and AAC groups at different time points.
Cardiac Insulin Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure Following Pressure Overload Hypertrophy
Liyan Zhang, Jagdip S. Jaswal, John R. Ussher, Sowndramalingam Sankaralingam, Cory Wagg, Michael Zaugg and Gary D. Lopaschuk

Circ Heart Fail. published online July 16, 2013;
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/early/2013/07/16/CIRCHEARTFAILURE.112.000228

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2013/07/16/CIRCHEARTFAILURE.112.000228.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Heart Failure_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Heart Failure_ is online at:
http://circheartfailure.ahajournals.org//subscriptions/
Cardiac insulin resistance and decreased mitochondrial energy production precede the development of systolic heart failure following pressure overload hypertrophy

Liyan Zhang, PhD; Jagdip S. Jaswal, PhD; John R. Ussher, PhD;
Sowndramalingam Sankaralingam, PhD; Cory Wagg, Michael Zaugg, MD; and
Gary D. Lopaschuk, PhD

Cardiovascular Research Centre, Mazankowski Alberta Heart Institute,
University of Alberta, Edmonton, Alberta, Canada

Supplemental Materials
Supplemental Methods

Abdominal Aortic Constriction Procedure: Mice were anaesthetized with 0.75% isoflurane. A 2 cm dorsal medial lateral incision was made with its cranial terminal at the level of the 13 rib. The left abdominal wall was opened 1.5 cm lateral to the spine. At the level of the adrenal gland the abdominal aorta was located against the muscle of the back. A titanium vascular clip was applied to the aorta with an applicator holder that has a groove which allows the clip to bend into the notch. It was set for a 0.11 mm closure. Sham operated animals were subjected to an identical surgical procedure except that a clip was not applied to the aorta. The surgical incision was then closed and the animals allowed to recover under constant supervision.

Echocardiography and Tissue Doppler Imaging: Mice were anesthetized with 0.75% isoflurane for the duration of the transthoracic echocardiographic procedure. All echocardiographic procedures were performed using a Visualsonic Vevo 700 instrument. M-mode images were obtained for measurements of left ventricular (LV) wall thickness, LV end-diastolic diameter, and LV end-systolic diameter. LV ejection fraction (%EF) and fractional shortening (%FS) were calculated. Tissue Doppler imaging (TDI) was used to assess diastolic function, where a reduction in E’ and an elevation in E/E’ were considered markers of elevated LV filling pressure and diastolic dysfunction. TDI was utilized to characterize the inferolateral region in the radial short axis at the base of the LV with the assessment of early (E’) and late diastolic (A’) myocardial velocities.
Supplemental Table

Hexokinase activity, pyruvate dehydrogenase (PDH) activity, and malonyl CoA levels in the hypertrophied hearts

<table>
<thead>
<tr>
<th></th>
<th>Hexokinase (µmol/g protein/min)</th>
<th>PDH activity (µmol/g wet wt/min)</th>
<th>Malonyl CoA (nmol/g wet wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Sham 2-wk</td>
<td>240 ± 40</td>
<td>1.0 ± 0.16</td>
<td>1.21 ± 0.3</td>
</tr>
<tr>
<td>AAC 2-wk</td>
<td>230 ± 20</td>
<td>1.2 ± 0.20</td>
<td>1.46 ± 0.2</td>
</tr>
<tr>
<td>Sham 3-wk</td>
<td>310 ± 50</td>
<td>1.2 ± 0.02</td>
<td>1.50 ± 0.2</td>
</tr>
<tr>
<td>AAC 3-wk</td>
<td>250 ± 40</td>
<td>1.0 ± 0.02</td>
<td>1.51 ± 0.2</td>
</tr>
</tbody>
</table>

n = 5 per group