Predictors of Disease Progression in Pediatric Dilated Cardiomyopathy

Molina et al: Predictors in Pediatric Dilated Cardiomyopathy

Kimberly M. Molina, MD, University of Utah School of Medicine, Salt Lake City, UT
Peter Shrader, MA, New England Research Institutes, Watertown, MA
Steven D. Colan, MD, Boston Children’s Hospital and Harvard Medical School, Boston, MA
Seema Mital, MD, The Hospital for Sick Children, Toronto, Canada
Renee Margossian, MD, Children’s Hospital Boston and Harvard Medical School, Boston, MA
Lynn A. Sleeper, ScD, New England Research Institutes, Watertown, MA
Girish Shirali, MD, Children’s Mercy Hospitals and Clinics, Kansas City, MO
Piers Barker, MD, Duke University Medical Center, Durham, NC
Charles E. Canter, MD, Washington University in St. Louis, St. Louis, MO
Karen Altmann, MD, Children’s Hospital of New York, New York, NY
Elizabeth Radojewski, RN, The Hospital for Sick Children, Toronto, Canada
Elif Seda Selamet Tierney, MD, Lucille Packard Children’s Hospital, Palo Alto, CA
Jack Rychik, MD, Children’s Hospital of Philadelphia, Philadelphia, PA
Lloyd Y. Tani, MD, University of Utah School of Medicine, Salt Lake City, UT
For the Pediatric Heart Network Investigators

Correspondence to
Kimberly M. Molina, MD
100 N. Mario Capecchi Dr, Ste 1500
Salt Lake City, UT 84113
Phone: 801-662-5400
Fax: 801-662-5474
Email: Kimberly.molina@imail.org

DOI: 10.1161/CIRCHEARTFAILURE.113.000125

Journal Subject Codes: Heart failure:[110] Congestive, Diagnostic testing:[31] Echocardiography
Abstract

Background—Despite medical advances, children with dilated cardiomyopathy (DCM) remain at high risk of death or need of cardiac transplantation. We sought to identify predictors of disease progression in pediatric DCM.

Methods and Results—The Pediatric Heart Network evaluated chronic DCM patients with prospective echocardiographic and clinical data collection over an 18-month follow-up. Inclusion criteria were age <22 years and DCM disease duration >2 months. Patients needing IV inotropic/mechanical support or listed status 1A/1B for transplant were excluded. Disease progression was defined as an increase in transplant listing status, hospitalization for heart failure, IV inotropes, mechanical support, or death. Predictors of disease progression were identified using Cox proportional hazards modeling and classification and regression tree (CART) analysis. Of the 127 patients, 28 (22%) had disease progression during the 18-month follow-up. Multivariable analysis identified older age at diagnosis (HR=1.14 per yr, p<0.001), larger left ventricular (LV) end-diastolic m-mode dimension z-score (LVEDDz) (HR 1.49, p<0.001), and lower septal peak systolic tissue Doppler velocity z-score (HR=0.81, p=0.01) as independent predictors of disease progression. CART analysis stratified patients at risk of disease progression with 89% sensitivity and 94% specificity based on LVEDDz≥7.7, LV ejection fraction <39%, LV inflow propagation velocity (color m-mode) z-score < -0.28, and age at diagnosis ≥8.5 months.

Conclusions—In children with chronic stable DCM, a combination of diagnosis after late infancy, echocardiographic parameters of larger LV size, systolic and diastolic function predicted disease progression.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00123071.

Key Words: cardiomyopathy, pediatrics, heart transplant
Dilated cardiomyopathy (DCM) is the most common pediatric cardiomyopathy, an important cause of heart failure (HF), and a leading cause of heart transplantation in children. [1-4] Despite recent medical advances, event-free survival remains poor with 5-year rates of death or transplantation reported as high as 46%. [1] A limited number of risk factors have been consistently identified to help predict outcomes; older age at presentation and decreased indices of systolic left ventricular (LV) function have been associated with a worse prognosis in multiple studies. [5-13] However, the sensitivity of these parameters in early risk stratification and prediction of adverse events remains limited. Newer echocardiographic modalities have shown promise in identifying abnormalities that may be associated with adverse events, such as comprehensive assessment of ventricular dysfunction with tissue Doppler imaging (TDI), however these modalities have not yet been studied in a comprehensive manner in a large prospective cohort of pediatric patients with DCM. [14-17] Early risk stratification would help guide frequency of monitoring and optimize timing and type of interventions, including medications or device therapies, and ultimately cardiac transplantation. The purpose of this study was therefore to identify clinical and echocardiographic factors associated with disease progression in children with DCM.

Methods

The study was part of the Ventricular Volume Variability (VVV) Study conducted through the Pediatric Heart Network, a multi-center clinical research consortium. The VVV study is a multi-center, observational study of a prospectively enrolled cohort of children with DCM. Subjects were enrolled at 8 study centers between May 2005 and July 2007. The study was approved by an institutional review board at all sites with informed consent obtained from all subjects. The core lab measurements from echocardiograms performed at study enrollment were used in the analysis. Demographic information and clinical data were obtained during regularly scheduled visits throughout the 18-month follow-up period. The primary aim of this report was to identify echocardiographic and clinical variables present at the time of enrollment that correlated with subsequent disease progression.
Significant disease progression was defined as any of the following: hospitalization for HF, initiation of intravenous (IV) inotropic support, transplant listing or increase in listing status, decompensated HF requiring mechanical circulatory support, or death. Patient enrollment criteria included: age < 22 years, diagnosis of DCM based on the first study echocardiogram with a LV end-diastolic dimension (EDD) >5.5 cm (or z-score for age > 2) and LV ejection fraction (EF) < 50% or shortening fraction (SF) <28% (or z-score for age < -2), disease duration >2 months, anticipated ongoing evaluation at the same institution, and informed consent. Exclusion criteria included other forms of cardiomyopathy including non-compaction, congenital heart disease, frequent ectopy, need for intravenous or mechanical hemodynamic support, and transplant listing status of 1A or 1B at the time of screening. Only two patients without an event, of the 127 total, had fewer than 18 months follow-up, due to early withdrawal from the study. Patient data collected included age, gender, height, weight, blood pressure, race, etiology of DCM, and medication type and dose. Body surface area (BSA) was calculated using the Haycock formula. [18]

All centers followed a standardized protocol for echocardiographic image acquisition. Baseline transthoracic echocardiograms performed at study enrollment were submitted to the core laboratory for measurement of echocardiographic variables (M-mode, 2D, Doppler and TDI) by two experienced readers. For each variable, measurements were performed on three sequential cardiac cycles. Thirty-five parameters of LV dimension, mass, systolic and diastolic function obtained from the enrollment echocardiograms and 28 clinical factors were included for analysis as predictors of disease progression. (Please refer to the Supplemental Table for detailed list) A previous VVV analysis on the impact of beat averaging on reproducibility of echocardiographic variables showed that use of 3-beat averaging reduced inter- and intra-reader variability, and thus the 3-beat average measurements using the primary core reader’s interpretation were used in this analysis. [19] All echocardiographic measurements were made using custom DICOM software (Echotrace, Marcus Laboratories, Boston, MA) according to previously published techniques.[19] Z-scores on echocardiographic measurements (for BSA or age) were used...
where applicable. LV flow propagation z-scores were calculated using the following formula:

\[\text{z-score} = \frac{\text{LV flow propagation} - 0.191 \times \text{Age} + 66.7}{24.5 - 0.132 \times \text{Age}} \]

Additional data points were assessed as both percentages and z-scores, including SF and EF. Further analysis of mitral regurgitation was undertaken; vena contracta width (VCW) was calculated as the average of the dimensions from orthogonal planes (parasternal long axis and apical 4-chamber views). Mitral regurgitation grade was evaluated subjectively based on visual appearance and objectively based on VCW adjusted to body surface area as adjusted VCW (VCWA, mm/m) = VCW/BSA0.5.[20] Severity categories were defined as mild, moderate, and severe for VCWA <3, 3-4.5, and >4.5, respectively. Patients with VCWA within 0.3 mm/m of a boundary value were adjudicated based on visual estimate of severity.

Univariate predictors of time to disease progression were identified using Cox proportional hazards regression. Multivariable modeling utilized a stepwise Cox proportional hazards procedure for all variables with a univariate p-value <0.2. A p-value <0.1 was then required to remain in the model and determine independent predictors. Certain candidate predictors were not included in the multivariate analysis due to excessive missing data (see starred items in the Supplemental Material), including Doppler variables which were only measurable in the absence of a mitral valve inflow summation wave. Logistic regression analysis was also performed with identical significant findings demonstrating that use of a dichotomous outcome measure for this analysis is robust to small differences in length of follow-up.

As such, a classification and regression tree (CART) analysis was performed to construct a risk stratification algorithm to predict disease progression.[21] CART is a nonparametric technique that produces a decision tree by a series of binary splits (recursive partitioning) of the data. The CART model selects variables in order of magnitude of improvement in prediction of the outcome and the variables which contribute the most to the outcome are listed first at the top of the tree. Analyses were performed using SAS version 9.2 (SAS Institute, Inc., Cary, NC) and an open-source adaptation of the CART algorithm (RPART library in R version 2.14.1).
Results

Of the 127 patients in the analytic cohort, median age at enrollment was 9.2 years (IQR 4.0-15.0 yrs). Table 1 summarizes the demographic information for patients who subsequently developed disease progression compared to those who did not. At the time of enrollment, most patients were classified as having NYHA/Ross Class I or II HF symptoms. Medical therapy included ACE inhibition (83%), digoxin (59%), diuretics (54%), and beta blockers (53%). Of the 28 patients (22%) who met criteria for disease progression, 3 died, 16 were transplanted, 3 required initiation of IV inotropes, 1 received an LV assist device, 7 had an increase in listing status, and 14 were hospitalized for worsened HF (not mutually exclusive). The majority of patients with disease progression had a diagnosis of idiopathic DCM (n=20), followed by Adriamycin-associated cardiotoxicity (n=3); no patients with myocarditis subsequently developed disease progression in this follow-up period. Figure 1 depicts the freedom from disease progression for the entire cohort; 6 and 12 month rates of disease progression were 15% and 22% respectively. Table 2 outlines the univariate associations between baseline clinical and echocardiographic variables in patients with disease progression with a p value of <0.2 (for a comprehensive listing of all predictors assessed, refer to the Supplemental Table). Clinical factors associated with disease progression on univariate analysis included older age at diagnosis, more recent diagnosis of DCM, male gender and symptomatic HF- specifically increased symptoms of exercise intolerance, feeding difficulties, dyspnea, need for hospitalization and IV inotropes in the six months prior to enrollment. Echocardiographic indices associated with disease progression included measures of LV size, degree of mitral regurgitation, as well as dimensional and volumetric assessments of systolic function. Diastolic assessments utilizing mitral inflow measurements and TDI were also significantly associated with disease progression; however, many of these parameters were not included in subsequent multivariate analysis due to incomplete separation of early and late diastolic flows or annular motion (Doppler summation waves) resulting in missing data (see asterisked variables in the Supplemental Material).
Independent predictors of disease progression on multivariate analysis included older age at diagnosis (p<0.001), larger m-mode LV EDD z-score (p<0.001) and lower septal peak systolic TDI velocity z-score at enrollment (p=0.01) (Figure 2). Older age at diagnosis was associated with disease progression with a hazard ratio of 1.14 per one year increase in age at enrollment (confidence interval 1.06-1.23).

Echocardiographic evidence of larger LV EDD at enrollment was the strongest predictor of disease progression with a hazard ratio of 1.49 for every unit z-score increase (confidence interval 1.32-1.69). Additionally, a higher septal peak systolic TDI velocity z-score was protective against disease progression with a hazard ratio of 0.81 for every unit z-score increase (confidence interval 0.69-0.95).

Given the relatively large number of associated variables on Cox proportional hazards modeling, a CART analysis was performed to identify the variables with the highest discriminatory power to predict disease progression. This analysis identified a combination of three echocardiographic and one clinical factor to be useful in risk stratifying these patients (Figure 3). M-mode LV EDD z-score was identified as the top discriminator of disease progression with 14 of 15 (93%) patients with LV EDD z-score > 7.7 showing disease progression compared to 13% of patients with LV EDD z-score of <7.7. In patients with LV EDD z-score <7.7, LV EF emerged as a predictor of disease progression with 12 of 36 (33%) patients with LV EF of <38% showing disease progression compared to only 3% of those with a higher EF. LV flow propagation velocity z-score served as a further discriminator; among those with an LV EDD z-score <7.7 and LV EF < 38%, 12 of 24 (50%) patients with an LV flow propagation velocity z-score < -0.28 had disease progression compared to none of the 12 patients with a z-score >-0.28. The final discriminator was age at diagnosis. In the children with an LV EDD z-score <7.7, an LV EF <38% and an LV flow propagation z-score <-0.28, 11 of 16 (69%) patients older than 8.5 months at diagnosis had disease progression compared to 1 of 8 (12%) younger than 8.5 months at diagnosis. This risk algorithm tree had a sensitivity of 89%, a specificity of 94%, and a predictive accuracy of 93% for identifying patients who experienced disease progression (Table 3). Figure 4 depicts the Kaplan-Meier curve comparing those
individuals identified by CART analysis to be at high risk of disease progression to those at low risk of progression.

Discussion

Transplant-free survival in children with DCM has not appreciably improved in recent decades.

[11-13] In adults with HF, models have been devised to accurately assess patient risk of mortality largely based on prognostic factors incorporating patient demographics (age, gender), clinical parameters of HF (NYHA class, EF, blood pressure, maximal oxygen consumption (VO2)), medical therapies employed (drug dosing, devices) and serum biomarkers of disease severity (hemoglobin, lymphocyte counts, sodium levels, total cholesterol and uric acid) [22,23]. Robust predictors of disease progression in pediatric DCM are lacking. Our study assessed many of the above parameters, with the exception of laboratory markers and VO2, in an attempt to identify prognostic factors for pediatric DCM disease progression in chronically stable outpatients. This analysis confirms the importance of age at diagnosis and echocardiographic evidence of LV size and impaired systolic and diastolic function as predictors of disease progression and associated adverse events. Unlike most published studies that have utilized a retrospective or registry design, our prospective study has unique strengths and allowed for development of a model predictive of disease progression with high sensitivity, specificity and predictive accuracy. If validated in additional populations, this model may provide a clinically useful decision making tool.

Patients who showed disease progression were more symptomatic and had more severe echocardiographic abnormalities at enrollment. However, older age at diagnosis in this study was the only clinical parameter that remained independently associated with disease progression on multivariate analysis. Patient age has long been identified as an important predictor of outcome in both children and adults with DCM, with older school aged children at increased risk in pediatric DCM studies. [1, 2, 3, 5, 9, 11, 12, 13] Additionally, there is some evidence that very young children may also be at risk. Tsirka et al identified
two age groups at risk for death/transplantation—those younger than 1 year of age at diagnosis (HR 7.1) as well as an older subset greater than 12 years of age (HR 4.5).

A pediatric cohort from Australia also pointed to a possible bimodal distribution of age related risk, with a trend towards worse survival in children less than 1 year of age.[2] The younger subset of patients in our study cohort was not identified to be at increased risk, but the inclusion criteria requiring a minimum of two months duration with the diagnosis of DCM and the relatively small patient sample in this age range may have limited our ability to extrapolate the impact of a diagnosis of DCM in early infancy on long term prognosis. Interestingly, no other demographic parameters or clinical symptoms were independently predictive of worse outcome in this analysis; this contrasts with the recent study by Alvarez et al that utilized the Pediatric Cardiomyopathy Registry of patients with idiopathic DCM in which the severity of HF symptoms at diagnosis was the single strongest predictor of death or transplantation.[13] This difference could be due to the focus in the VVV study on a cohort of chronic stable DCM outpatients, thus excluding those patients with symptomatic HF requiring inotropic support at the time of enrollment.

The emergence of echocardiographic parameters as independent predictors of progression suggests that echocardiography provides a more objective assessment of disease severity as compared to clinical symptomatology.

Echocardiography plays a prominent role both in diagnosis and ongoing evaluation of DCM patients. This analysis highlights the immense value that standard imaging techniques can add in identifying patients at risk for a poor outcome. The prospective nature of this study allowed for a standardized and comprehensive assessment of a relatively larger number of echocardiographic variables than has previously been studied in children. Our study confirmed previously identified associations of larger LV dimensions, decreased indices of LV systolic and diastolic function, as well as degree of mitral regurgitation as important univariate predictors of disease progression.[5-14,24,25] On multivariate analysis, the strongest predictor of disease progression was larger LV EDD, with further evidence of its importance found in the CART analysis algorithm. Increasing LV EDD is a part of the cardiac
remodeling process in patients with decreased systolic function and DCM. Larger LV EDD has long been found to correlate with adverse clinical outcome [1,2,11,13,25,26] and has been associated with increased mortality in patients with DCM listed for cardiac transplantation, particularly the infant subset, as well as impacting survival in the first 6 months following transplant.[25] The Pediatric Cardiomyopathy Registry (PCMR) found that a larger LV EDD was associated with increased risk of transplantation, but a decreased risk of death. [13] This finding may be due to an aspect of referral bias, where children with larger LV EDD may be directed towards transplantation earlier, potentially limiting true assessment of their overall mortality risk. Regardless, the utility of LV EDD has repeatedly been identified as a powerful prognosticating tool in pediatric DCM.

Our study also found that lower peak septal systolic velocity z-scores by TDI was associated with worse clinical outcome on multivariate analysis. This TDI parameter highlights both the role of diminished systolic function in these patients and may further signify the importance of biventricular structural interdependence and functional augmentation that can be lost as a consequence of DCM. As one of the newer imaging modalities, TDI has proven useful in evaluating both systolic and diastolic function in several disease processes and now has become a standard part of echocardiographic assessment.

McMahon et al found that TDI velocities were significantly reduced in children with DCM compared to normal controls and that tricuspid velocity during early diastole was a predictor of patients who subsequently died or needed transplantation.[14] In adult patients with chronic systolic HF, septal TDI measurements were found to be more reliable and clinically relevant compared to lateral TDI measurements, with higher septal E/ Ea ratios correlated with natriuretic peptide levels and adverse cardiac events.[27] In adults with HF, septal DTI has also been shown to be of value in identifying patients who may benefit from cardiac resynchronization therapy. [28]

CART modeling and analysis identified a combination of LV dimension, LV systolic and diastolic function, and the clinical parameter of age at diagnosis as valuable in risk-stratifying this cohort of patients with high sensitivity, specificity and predictive accuracy. Although each of the 4 parameters
show some discriminating value, it is the combination of all 4 components that yields the best prognostic value (Table 3). LV dimension, specifically a LV EDD z-score of 7.7 or greater, remained as the top predictor on CART analysis. The degree of LV systolic dysfunction added an additional important determinant of prognosis, with an LV EF of less than 38% demonstrating incremental value in further subcategorizing patients with a less dilated phenotype (LVEDD <7.7 z-score) of DCM. Measures of decreased systolic function at presentation, both by SF and EF, previously have been associated with worse prognosis in DCM patients. [1,2,11,12,25,29] Kantor et al determined that patients with a lower EF at presentation exhibited a substantially increased risk of death or transplantation, with an incremental increased risk of 35% for every 10% decrease in LV EF at presentation.[12] Furthermore, patients who show no significant improvement in LV function after initiation of medical therapy are at increased risk, with persistently decreased SF below 20% in long term follow-up strongly associated with poor outcome in the pediatric DCM population. [2]

The final echocardiographic component in the CART algorithm utilized the diastolic assessment of LV flow propagation to characterize patients at risk for disease progression. This measurement of the slope of the color Doppler mitral inflow wave during early LV filling has been used as a noninvasive assessment of LV relaxation. While this calculation is not regularly performed as a part of the standard pediatric echocardiogram, it has proven useful in evaluating patients with abnormal LV relaxation, including different forms of cardiomyopathy and systemic hypertension. Brun et al found that the velocity of flow propagation was lower in patients with DCM and proved a useful tool in studying diastolic function.[30] Although LV flow propagation was not identified as an independent predictor of disease progression in this patient population, it provides additional stratifying power if the z-score is less than -0.28 for determining patients at risk for worse outcomes when used in conjunction with LV EDD and EF. Prospective collection of an extensive list of echocardiographic parameters of cardiac size and function with concurrent clinical factors allowed for the CART analysis and formulation of a well designed risk
stratification tool that, once further validated in other patient groups, may help practitioners enhance their ability to prognosticate disease progression in their patients.

Study Limitations

The purpose of this study was to evaluate patients with chronic, stable DCM that resulted in exclusion of those who at the time of enrollment manifested rapidly-advancing or end-stage HF. Thus, the results of this study may not be generalizable to patients acutely presenting with DCM or those requiring IV inotropic or mechanical support early in their clinical course. Furthermore, the robustness of these predictors is limited by the small sample size. The follow-up period to determine disease progression was relatively short compared to other studies [1,2] and longer evaluation might prove useful to better understand the large number of factors affecting the natural history of pediatric DCM. Due to limited numbers of patients with additional laboratory markers, such as natriuretic peptides, or exercise testing VO2 measurements, the influence of these markers of HF could not be assessed in our study. Independent validation of our CART risk algorithm in other populations of pediatric DCM patients is needed to confirm its utility as a risk-stratifying tool.

Conclusions

In children with chronic stable DCM, diagnosis after late infancy and echocardiographic parameters of LV size, systolic and diastolic dysfunction were independently associated with disease progression. If confirmed in other populations, the proposed CART algorithm may be useful to reliably risk stratify DCM patients and identify those who might benefit from more frequent monitoring, intensification of medical treatment or earlier consideration of mechanical support and/or transplant evaluation and listing.
Sources of Funding

Supported by U01 grants from the National Heart, Lung, and Blood Institute (HL068269, HL068270, HL068279, HL068281, HL068285, HL068292, HL068290, HL068288). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NHLBI.

Disclosures

None.

References

2010; 55; 1377-1384.

Table 1. Demographics by disease progression. Median (IQR) or Frequency (%) shown

<table>
<thead>
<tr>
<th></th>
<th>Stable disease</th>
<th>Progressive disease</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>99</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td>0.054</td>
</tr>
<tr>
<td>Age at diagnosis, yr</td>
<td>1.1 (0.3-10.2)</td>
<td>7.5 (0.9-13.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Age at enrollment, yr</td>
<td>8.8 (4.0,15.0)</td>
<td>9.4 (3.6,14.8)</td>
<td>0.869</td>
</tr>
<tr>
<td>Time from diagnosis of cardiomyopathy to enrollment, yr</td>
<td>3.5 (0.6,6.8)</td>
<td>0.8 (0.3,3.0)</td>
<td>0.006</td>
</tr>
<tr>
<td>Length of follow-up, yr</td>
<td>1.5 (1.1,1.5)</td>
<td>0.5 (0.2,1.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Ross/NYHA Heart Failure Classification</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Class I</td>
<td>73 (74%)</td>
<td>11 (39%)</td>
<td><.001†</td>
</tr>
<tr>
<td>Class II</td>
<td>23 (23%)</td>
<td>14 (50%)</td>
<td></td>
</tr>
<tr>
<td>Class III</td>
<td>3 (3%)</td>
<td>3 (11%)</td>
<td></td>
</tr>
<tr>
<td>Class IV</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Primary cause of dilated cardiomyopathy</td>
<td></td>
<td></td>
<td>0.329</td>
</tr>
<tr>
<td>Metabolic disorder</td>
<td>2 (2%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial disorder</td>
<td>1 (1%)</td>
<td>1 (4%)</td>
<td></td>
</tr>
<tr>
<td>Neuromuscular disease associated with cardiomyopathy</td>
<td>2 (2%)</td>
<td>2 (7%)</td>
<td></td>
</tr>
<tr>
<td>Single gene defect</td>
<td>3 (3%)</td>
<td>1 (4%)</td>
<td></td>
</tr>
<tr>
<td>Adriamycin-associated cardiotoxicity</td>
<td>11 (11%)</td>
<td>3 (11%)</td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>65 (66%)</td>
<td>20 (71%)</td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>6 (6%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9 (9%)</td>
<td>1 (4%)</td>
<td></td>
</tr>
</tbody>
</table>

*Wilcoxon rank-sum test for medians or a Fisher Exact Test for frequencies.

†Mantel-Haenszel test for trend.
Table 2. Univariate predictors of significant disease progression with p value < 0.2 using Cox proportional hazards process

<table>
<thead>
<tr>
<th>Variable*</th>
<th>n</th>
<th>No/Mild Progression (n=99)</th>
<th>n</th>
<th>Severe Progression (n=28)</th>
<th>P value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at diagnosis of cardiomyopathy, years (IQR)</td>
<td>99</td>
<td>1.1 (0.3-10.2)</td>
<td>28</td>
<td>7.5 (0.9-13.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Median time from diagnosis to baseline echo, years (IQR)</td>
<td>99</td>
<td>3.47 (0.56-6.84)</td>
<td>28</td>
<td>0.79 (0.27-2.97)</td>
<td>0.01</td>
</tr>
<tr>
<td>Male</td>
<td>99</td>
<td>39 (39%)</td>
<td>28</td>
<td>17 (61%)</td>
<td>0.04</td>
</tr>
<tr>
<td>Race</td>
<td>99</td>
<td>69 (70%)</td>
<td>28</td>
<td>14 (50%)</td>
<td>0.06</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other or unknown race</td>
<td>30 (30%)</td>
<td>14 (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitalized in previous six months</td>
<td>99</td>
<td>26 (26%)</td>
<td>28</td>
<td>15 (54%)</td>
<td>0.007</td>
</tr>
<tr>
<td>No. of hospitalizations related to heart failure</td>
<td>99</td>
<td>86 (87%)</td>
<td>28</td>
<td>17 (61%)</td>
<td><0.001</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure to thrive in 6 months prior to enrollment</td>
<td>98</td>
<td>9 (9%)</td>
<td>28</td>
<td>6 (21%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Dyspnea in 6 months prior to enrollment</td>
<td>99</td>
<td>11 (11%)</td>
<td>27</td>
<td>12 (44%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Feeding difficulties or exercise intolerance in 6 months prior to enrollment</td>
<td>99</td>
<td>32 (32%)</td>
<td>28</td>
<td>18 (64%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>No/Mild Progression (n=99)</td>
<td>n</td>
<td>Severe Progression (n=28)</td>
<td>P value†</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Palpitations in 6 months prior to enrollment</td>
<td>91</td>
<td>9 (10%)</td>
<td>24</td>
<td>5 (21%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Intravenous inotropic medications in 6 months prior to enrollment</td>
<td>90</td>
<td>8 (9%)</td>
<td>27</td>
<td>7 (26%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>97</td>
<td></td>
<td>28</td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Z<-1</td>
<td></td>
<td>25 (26%)</td>
<td></td>
<td>11 (39%)</td>
<td></td>
</tr>
<tr>
<td>-1≤Z≤1</td>
<td></td>
<td>53 (55%)</td>
<td></td>
<td>10 (36%)</td>
<td></td>
</tr>
<tr>
<td>Z>1</td>
<td></td>
<td>19 (20%)</td>
<td></td>
<td>7 (25%)</td>
<td></td>
</tr>
<tr>
<td>End-diastolic short axis dimension, m-mode z-score</td>
<td>99</td>
<td>3.4±1.8</td>
<td>26</td>
<td>7.4±3.7</td>
<td><0.001</td>
</tr>
<tr>
<td>End-diastolic short axis dimension, 2D z-score</td>
<td>99</td>
<td>3.6±2.4</td>
<td>27</td>
<td>7.8±4.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Posterior wall thickness to dimension ratio, m-mode z-score</td>
<td>98</td>
<td>-1.8±1.0</td>
<td>27</td>
<td>-2.6±1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Posterior wall thickness to dimension ratio, 2D z-score</td>
<td>99</td>
<td>-1.5±1.2</td>
<td>28</td>
<td>-2.2±1.3</td>
<td>0.004</td>
</tr>
<tr>
<td>LV mass z-score m-mode</td>
<td>99</td>
<td>1.3±1.5</td>
<td>26</td>
<td>3.2±2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass z-score, 2D</td>
<td>98</td>
<td>1.9±1.7</td>
<td>27</td>
<td>4.6±2.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Mass to volume ratio z-score</td>
<td>99</td>
<td>-1.0±1.1</td>
<td>28</td>
<td>-1.7±1.2</td>
<td>0.003</td>
</tr>
<tr>
<td>Sphericity index z-score</td>
<td>99</td>
<td>1.0±1.3</td>
<td>28</td>
<td>2.0±1.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Median eccentricity index (IQR)</td>
<td>99</td>
<td>0.93 (0.92-0.94)</td>
<td>28</td>
<td>0.92 (0.90-0.93)</td>
<td>0.001</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>No/Mild Progression (n=99)</td>
<td>n</td>
<td>Severe Progression (n=28)</td>
<td>P value†</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Shortening fraction, m-mode, %</td>
<td>99</td>
<td>21.7±6.4</td>
<td>27</td>
<td>12.8±4.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Median IQR</td>
<td>99</td>
<td>21.9 (18.0-27.0)</td>
<td>27</td>
<td>12.0 (8.7-16.7)</td>
<td></td>
</tr>
<tr>
<td>Shortening fraction, m-mode z-score</td>
<td>99</td>
<td>-6.1±3.9</td>
<td>27</td>
<td>-12.1±4.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Shortening fraction, 2D %</td>
<td>99</td>
<td>18.7±6.2</td>
<td>28</td>
<td>11.6±5.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Median IQR</td>
<td>99</td>
<td>18.6 (14.3-23.7)</td>
<td>28</td>
<td>11.7 (8.3-13.2)</td>
<td></td>
</tr>
<tr>
<td>Shortening fraction, 2D z-score</td>
<td>99</td>
<td>-5.1±1.9</td>
<td>28</td>
<td>-7.2±1.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Aortic ejection time, m-mode mSec</td>
<td>99</td>
<td>263.6±36.3</td>
<td>28</td>
<td>241.4±33.1</td>
<td>0.003</td>
</tr>
<tr>
<td>Ejection fraction %</td>
<td>99</td>
<td>43.1±9.7</td>
<td>28</td>
<td>27.9±11.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>99</td>
<td>44.0 (37.6-51.0)</td>
<td>28</td>
<td>27.1 (19.1-35.0)</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction z-score</td>
<td>99</td>
<td>-4.3±2.1</td>
<td>28</td>
<td>-7.5±2.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Median mitral regurgitation jet width/BSA(^{0.5}) (IQR)</td>
<td>99</td>
<td>0.2 (0.0-0.3)</td>
<td>28</td>
<td>0.3 (0.2-0.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Severity of mitral valve regurgitation</td>
<td>98</td>
<td></td>
<td>28</td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>33 (34%)</td>
<td>3</td>
<td>(11%)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td></td>
<td>44 (45%)</td>
<td>9</td>
<td>(32%)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
<td>13 (13%)</td>
<td>8</td>
<td>(29%)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td>8 (8%)</td>
<td>8</td>
<td>(29%)</td>
<td></td>
</tr>
<tr>
<td>Severity of mitral valve regurgitation</td>
<td>98</td>
<td></td>
<td>28</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>No/Mild Progression (n=99)</td>
<td>n</td>
<td>Severe Progression (n=28)</td>
<td>P value†</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----</td>
<td>---------------------------</td>
<td>----</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>None/Mild</td>
<td>77 (79%)</td>
<td></td>
<td>12 (43%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate/Severe</td>
<td>21 (21%)</td>
<td></td>
<td>16 (57%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left lateral AV valve peak systolic velocity z-score†</td>
<td>99</td>
<td>-1.2±1.4</td>
<td>26</td>
<td>-2.3±1.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Tei Index</td>
<td>99</td>
<td>0.42±0.16</td>
<td>28</td>
<td>0.54±0.25</td>
<td>0.001</td>
</tr>
<tr>
<td>Septal AV valve peak systolic velocity z-score</td>
<td>99</td>
<td>-1.4±2.1</td>
<td>27</td>
<td>-3.1±2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Right lateral AV valve peak systolic velocity z-score</td>
<td>98</td>
<td>-0.2±1.4</td>
<td>26</td>
<td>-1.1±1.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular flow propagation velocity z-score</td>
<td>94</td>
<td>-0.3±0.9</td>
<td>28</td>
<td>-0.7±0.5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* All measures are from the time of study enrollment unless otherwise noted.

All echocardiographic measures are from the left ventricle, where applicable.

†P value is from Cox proportional hazards comparing stable disease to significant disease progression.

AV=atrioventricular, IQR = interquartile, LV= left ventricular
Table 3. Operating characteristics of each classification and regression tree (CART) analysis branch. EDDz = left ventricular end-diastolic dimension z-score; EF = ejection fraction; LV = left ventricular; prop = propagation velocity slope

<table>
<thead>
<tr>
<th>Variables in Tree</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDDz ≥ 7.7 only</td>
<td>50.0%</td>
<td>99.0%</td>
<td>93.3%</td>
<td>87.5%</td>
<td>88.2%</td>
</tr>
<tr>
<td>EDDz ≥ 7.7 and EF < 38.2</td>
<td>92.9%</td>
<td>74.7%</td>
<td>51.0%</td>
<td>97.4%</td>
<td>78.7%</td>
</tr>
<tr>
<td>EDDz ≥ 7.7, EF < 38.2, and LV flow prop. z < -0.281</td>
<td>92.9%</td>
<td>86.9%</td>
<td>66.7%</td>
<td>97.7%</td>
<td>88.2%</td>
</tr>
<tr>
<td>All Four Variables</td>
<td>89.3%</td>
<td>93.9%</td>
<td>80.6%</td>
<td>96.9%</td>
<td>92.9%</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Kaplan-Meier curve demonstrating percentages of patient cohort meeting criteria for clinically significant disease progression over the 18 month time interval. Within 9.8 months following enrollment, 20% of the population developed significant disease progression.

Figure 2. Box plots demonstrating the three independent predictors of disease progression: 1. Age at diagnosis, 2. Left ventricular end-diastolic dimension (LV EDD) z-score, 3. Septal tissue Doppler Imaging (TDI) systolic velocity z-score.

Figure 3. Classification and Regression Tree (CART) analysis risk stratifying patients with significant disease progression by three echocardiographic and one clinical factor. EDDz = left ventricular end-diastolic dimension z-score; EF = ejection fraction; LV flow prop. = left ventricular propagation velocity slope.

Figure 4. Kaplan Meier curve demonstrating patients at high risk of disease progression versus low risk. Definition of risk was based on whether patients met criteria on the Classification and Regression Tree (CART) analysis for significant disease progression utilizing all four tiers.
B. Left ventricular end-diastolic dimension (LV EDD) z-score tertiles

Proportion free from severe disease progression

Time since enrollment, months

- \(Z \leq 2.5 \) (N=41)
- \(2.6 < Z < 4.5 \) (N=42)
- \(Z \geq 4.5 \) (N=42)
Predictors of Disease Progression in Pediatric Dilated Cardiomyopathy
Kimberly M. Molina, Peter Shrader, Steven D. Colan, Seema Mital, Renee Margossian, Lynn A. Sleeper, Girish Shirali, Piers Barker, Charles E. Canter, Karen Altmann, Elizabeth Radojewski, Elif Seda Selamet Tierney, Jack Rychik and Lloyd Y. Tani

Circ Heart Fail. published online October 16, 2013;
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/early/2013/10/16/CIRCHEARTFAILURE.113.000125

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2013/10/16/CIRCHEARTFAILURE.113.000125.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org/subscriptions/
Supplemental Material

Table. Online supplement presenting all candidate predictors assessed for disease progression. Mean±SD or Frequency (%) shown unless otherwise noted.

<table>
<thead>
<tr>
<th>Variable*</th>
<th>n</th>
<th>Stable disease (n=99)</th>
<th>n</th>
<th>Progressive disease (n=28)</th>
<th>P†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age at diagnosis of cardiomyopathy, years (IQR)</td>
<td>99</td>
<td>1.1 (0.3-10.2)</td>
<td>28</td>
<td>7.5 (0.9-13.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Median time from diagnosis to baseline echo, years (IQR)</td>
<td>99</td>
<td>3.47 (0.56-6.84)</td>
<td>28</td>
<td>0.79 (0.27-2.97)</td>
<td>0.01</td>
</tr>
<tr>
<td>Median age at baseline echo, years (IQR)</td>
<td>99</td>
<td>8.83 (4.00-15.05)</td>
<td>28</td>
<td>9.39 (3.62-14.76)</td>
<td>0.74</td>
</tr>
<tr>
<td>Time between echos, years</td>
<td>90</td>
<td>0.81±0.31</td>
<td>17</td>
<td>0.73±0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>Male</td>
<td>99</td>
<td>39 (39%)</td>
<td>28</td>
<td>17 (61%)</td>
<td>0.048</td>
</tr>
<tr>
<td>Race</td>
<td>99</td>
<td>28</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>White</td>
<td>69 (70%)</td>
<td>14 (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other or unknown race</td>
<td>30 (30%)</td>
<td>14 (50%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino ethnicity</td>
<td>94</td>
<td>16 (17%)</td>
<td>27</td>
<td>2 (7%)</td>
<td>0.23</td>
</tr>
<tr>
<td>Symptom duration >0 months</td>
<td>98</td>
<td>15 (15%)</td>
<td>28</td>
<td>5 (18%)</td>
<td>0.74</td>
</tr>
<tr>
<td>Primary cause of dilated cardiomyopathy</td>
<td>99</td>
<td>28</td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>65 (66%)</td>
<td>20 (71%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-idiopathic</td>
<td>34 (34%)</td>
<td>8 (29%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known or suspected familial cardiomyopathy</td>
<td>99</td>
<td>13 (13%)</td>
<td>28</td>
<td>6 (21%)</td>
<td>0.28</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>n</td>
<td>Progressive disease (n=28)</td>
<td>p*</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----------------------</td>
<td>----</td>
<td>---------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Hospitalized in previous six months</td>
<td>99</td>
<td>26 (26%)</td>
<td>28</td>
<td>15 (54%)</td>
<td>0.008</td>
</tr>
<tr>
<td>No. of hospitalizations related to heart failure</td>
<td>99</td>
<td>86 (87%)</td>
<td>17 (61%)</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>11 (11%)</td>
<td>6 (21%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2 (2%)</td>
<td>5 (18%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure to thrive in 6 months prior to enrollment</td>
<td>98</td>
<td>9 (9%)</td>
<td>28</td>
<td>6 (21%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Feeding difficulties in 6 months prior to enrollment</td>
<td>99</td>
<td>11 (11%)</td>
<td>28</td>
<td>4 (14%)</td>
<td>0.53</td>
</tr>
<tr>
<td>Dyspnea in 6 months prior to enrollment</td>
<td>99</td>
<td>11 (11%)</td>
<td>27</td>
<td>12 (44%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Feeding difficulties or exercise intolerance in 6 months prior to enrollment</td>
<td>99</td>
<td>32 (32%)</td>
<td>28</td>
<td>18 (64%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Edema in 6 months prior to enrollment</td>
<td>99</td>
<td>9 (9%)</td>
<td>28</td>
<td>3 (11%)</td>
<td>0.80</td>
</tr>
<tr>
<td>Syncope in 6 months prior to enrollment</td>
<td>98</td>
<td>5 (5%)</td>
<td>26</td>
<td>2 (8%)</td>
<td>0.61</td>
</tr>
<tr>
<td>Palpitations in 6 months prior to enrollment</td>
<td>91</td>
<td>9 (10%)</td>
<td>24</td>
<td>5 (21%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Thrombo-embolic event in 6 months prior to enrollment</td>
<td>99</td>
<td>1 (1%)</td>
<td>28</td>
<td>1 (4%)</td>
<td>0.37</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>Progression disease (n=28)</td>
<td>P*</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Other symptoms in 6 months prior to enrollment</td>
<td>99</td>
<td>12 (12%)</td>
<td>1 (4%)</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Intravenous inotropic medications in 6 months prior to enrollment</td>
<td>90</td>
<td>8 (9%)</td>
<td>7 (26%)</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Ventricular tachyarrhythmia</td>
<td>9</td>
<td>6 (67%)</td>
<td>5 (100%)</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>97</td>
<td>0.0±1.4</td>
<td>-0.2±1.8</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z<1</td>
<td>25</td>
<td>(26%)</td>
<td>11 (39%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1≤Z≤1</td>
<td>53</td>
<td>(55%)</td>
<td>10 (36%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z>1</td>
<td>19</td>
<td>(20%)</td>
<td>7 (25%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median body surface area, m² (IQR)</td>
<td>99</td>
<td>0.9 (0.7-1.7)</td>
<td>1.1 (0.6-1.6)</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Body surface area-for-age z-score</td>
<td>98</td>
<td>0.1±1.3</td>
<td>0.2±1.9</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>End-diastolic short axis dimension, m-mode z-score</td>
<td>99</td>
<td>3.4±1.8</td>
<td>7.4±3.7</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>End-diastolic short axis dimension, 2D z-score</td>
<td>99</td>
<td>3.6±2.4</td>
<td>7.8±4.3</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Posterior wall thickness to dimension ratio, m-mode z-score</td>
<td>98</td>
<td>-1.8±1.0</td>
<td>-2.6±1.0</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>n</td>
<td>Progressive disease (n=28)</td>
<td>P*</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----------------------</td>
<td>----</td>
<td>---------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Posterior wall thickness to dimension ratio, 2D z-score</td>
<td>99</td>
<td>-1.5±1.2</td>
<td>28</td>
<td>-2.2±1.3</td>
<td>0.007</td>
</tr>
<tr>
<td>LV mass z-score m-mode</td>
<td>99</td>
<td>1.3±1.5</td>
<td>26</td>
<td>3.2±2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass z-score, 2D</td>
<td>98</td>
<td>1.9±1.7</td>
<td>27</td>
<td>4.6±2.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Mass to volume ratio z-score</td>
<td>99</td>
<td>-1.0±1.1</td>
<td>28</td>
<td>-1.7±1.2</td>
<td>0.006</td>
</tr>
<tr>
<td>Cardiac index, 2D, L/min/m²</td>
<td>99</td>
<td>4.0±1.2</td>
<td>28</td>
<td>4.1±1.4</td>
<td>0.56</td>
</tr>
<tr>
<td>Sphericity index z-score</td>
<td>99</td>
<td>1.0±1.3</td>
<td>28</td>
<td>2.0±1.4</td>
<td>0.001</td>
</tr>
<tr>
<td>Median eccentricity index (IQR)</td>
<td>99</td>
<td>0.93 (0.92-0.94)</td>
<td>28</td>
<td>0.92 (0.90-0.93)</td>
<td>0.003</td>
</tr>
<tr>
<td>Shortening fraction, m-mode %</td>
<td>99</td>
<td>21.7±6.4</td>
<td>27</td>
<td>12.8±4.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>99</td>
<td>21.9 (18.0-27.0)</td>
<td>27</td>
<td>12.0 (8.7-16.7)</td>
<td></td>
</tr>
<tr>
<td>Shortening fraction, m-mode z-score</td>
<td>99</td>
<td>-6.1±3.9</td>
<td>27</td>
<td>-12.1±4.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Shortening fraction, 2D %</td>
<td>99</td>
<td>18.7±6.2</td>
<td>28</td>
<td>11.6±5.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>99</td>
<td>18.6 (14.3-23.7)</td>
<td>28</td>
<td>11.7 (8.3-13.2)</td>
<td></td>
</tr>
<tr>
<td>Shortening fraction, 2D z-score</td>
<td>99</td>
<td>-5.1±1.9</td>
<td>28</td>
<td>-7.2±1.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Aortic ejection time, m-mode, msec</td>
<td>99</td>
<td>263.6±36.3</td>
<td>28</td>
<td>241.4±33.1</td>
<td>0.006</td>
</tr>
<tr>
<td>Heart rate / aortic ejection time, msec(^{1/2})</td>
<td>98</td>
<td>0.60±0.04</td>
<td>27</td>
<td>0.60±0.05</td>
<td>0.99</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>Progressive disease (n=28)</td>
<td>p*</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction %</td>
<td>99</td>
<td>43.1±9.7</td>
<td>28</td>
<td>27.9±11.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>99</td>
<td>44.0 (37.6-51.0)</td>
<td>28</td>
<td>27.1 (19.1-35.0)</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction z-score</td>
<td>99</td>
<td>-4.3±2.1</td>
<td>28</td>
<td>-7.5±2.4</td>
<td><0.001</td>
</tr>
<tr>
<td>Mitral valve peak early velocity z-score*</td>
<td>69</td>
<td>0.3±1.1</td>
<td>16</td>
<td>-0.4±0.9</td>
<td>0.03</td>
</tr>
<tr>
<td>Mitral valve peak atrial velocity z-score*</td>
<td>69</td>
<td>0.3±1.2</td>
<td>16</td>
<td>0.0±1.4</td>
<td>0.31</td>
</tr>
<tr>
<td>Mitral valve early velocity/Atrial velocity z-score*</td>
<td>69</td>
<td>0.0±1.1</td>
<td>16</td>
<td>-0.1±1.2</td>
<td>0.83</td>
</tr>
<tr>
<td>Median mitral regurgitation jet width/BSA^{0.5}</td>
<td>98</td>
<td>0.19 (0.00-0.29)</td>
<td>28</td>
<td>0.33 (0.21-0.46)</td>
<td>0.001</td>
</tr>
<tr>
<td>Severity of mitral valve regurgitation</td>
<td>98</td>
<td>28</td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>33 (34%)</td>
<td>3 (11%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>44 (45%)</td>
<td>9 (32%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>13 (13%)</td>
<td>8 (29%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>8 (8%)</td>
<td>8 (29%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severity of mitral valve regurgitation</td>
<td>98</td>
<td>28</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Non/Mild</td>
<td>77 (79%)</td>
<td>12 (43%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate/Severe</td>
<td>21 (21%)</td>
<td>16 (57%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tei Index</td>
<td>99</td>
<td>0.42±0.16</td>
<td>28</td>
<td>0.54±0.25</td>
<td>0.005</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>Progressive disease (n=28)</td>
<td>P*</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Left lateral AV valve peak early diastolic velocity z-score*</td>
<td>86</td>
<td>-1.3±1.5</td>
<td>23</td>
<td>-2.6±1.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Left lateral AV valve peak atrial diastolic velocity z-score*</td>
<td>86</td>
<td>-0.6±2.0</td>
<td>23</td>
<td>-1.1±0.9</td>
<td>0.21</td>
</tr>
<tr>
<td>Left lateral AV valve peak systolic velocity z-score</td>
<td>99</td>
<td>-1.2±1.4</td>
<td>26</td>
<td>-2.3±1.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Septal AV valve peak early diastolic velocity z-score*</td>
<td>79</td>
<td>-1.9±1.2</td>
<td>21</td>
<td>-3.2±1.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Septal AV valve peak atrial diastolic velocity z-score*</td>
<td>79</td>
<td>-0.5±0.9</td>
<td>21</td>
<td>-1.0±1.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Septal AV valve peak systolic velocity z-score</td>
<td>99</td>
<td>-1.4±2.1</td>
<td>27</td>
<td>-3.1±2.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Right lateral AV valve peak early diastolic velocity z-score*</td>
<td>67</td>
<td>-0.5±1.1</td>
<td>19</td>
<td>-1.2±0.9</td>
<td>0.02</td>
</tr>
<tr>
<td>Right lateral AV valve peak atrial diastolic velocity z-score*</td>
<td>67</td>
<td>-0.2±1.0</td>
<td>19</td>
<td>0.3±1.5</td>
<td>0.15</td>
</tr>
<tr>
<td>Right lateral AV valve peak systolic velocity right lateral AV valve z-score</td>
<td>98</td>
<td>-0.2±1.4</td>
<td>26</td>
<td>-1.1±1.4</td>
<td>0.002</td>
</tr>
<tr>
<td>Mitral valve average E/E' z-score*</td>
<td>67</td>
<td>2.2±3.4</td>
<td>15</td>
<td>6.5±7.0</td>
<td>0.004</td>
</tr>
<tr>
<td>Variable*</td>
<td>n</td>
<td>Stable disease (n=99)</td>
<td>n</td>
<td>Progressive disease (n=28)</td>
<td>P†</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Left ventricular flow propagation velocity z-score</td>
<td>94</td>
<td>-0.3±0.9</td>
<td>28</td>
<td>-0.7±0.5</td>
<td>0.03</td>
</tr>
<tr>
<td>Mitral valve left lateral E/E’ z-score*</td>
<td>69</td>
<td>2.2±3.3</td>
<td>15</td>
<td>7.4±8.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Mitral valve septal E/E’ z-score*</td>
<td>67</td>
<td>3.4±4.4</td>
<td>15</td>
<td>6.8±6.5</td>
<td>0.03</td>
</tr>
</tbody>
</table>

* Doppler variables which were only measureable in the absence of a summation wave were not considered for the stepwise multivariable model

All echocardiographic measures are from the left ventricle, where applicable.

†P value is from logistic regression comparing stable disease to significant disease progression.

AV=atrioventricular, IQR = interquartile range, echos=echocardiograms, LV=left ventricular