Predictors of Spontaneous Reverse Remodeling in Mild Heart Failure Patients with Left Ventricular Dysfunction

Brenyo et al: Spontaneous Ventricular Remodeling in MADIT-CRT

Andrew Brenyo, MD; Alon Barsheshet, MD; Valentina Kutyifa, MD; Anne-Christine Ruwald, MD; Mohan Rao, MD; Wojciech Zareba, MD, PhD; Anne-Catherine Pouleur, MD; Dorit Knappe, MD; Scott D. Solomon, MD; Scott McNitt, MS; David T. Huang, MD; Arthur J. Moss, MD; Ilan Goldenberg, MD

Cardiology Division of the Department of Medicine, University of Rochester Medical Center, Rochester, NY (ABr, VK, AR, MR, WZ, DH, AJM, IG, SM); Greenville University Health System, Greenville, SC (ABr); Brigham and Women's Hospital, Harvard Medical School, Boston, MA (AP, DK, SDS); Cardiology Department, Rabin Medical Center, Petah Tikva, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel (ABa)

Correspondence to
Ilan Goldenberg, MD
Heart Research Follow-up Program
Box 653
University of Rochester Medical Center
Rochester, NY 14642
Tel: 585-273-1875
Fax: 585-273-5283
E-mail: Ilan.Goldenberg@heart.rochester.edu

DOI: 10.1161/CIRCHEARTFAILURE.113.000929

Journal Subject Codes: Heart failure:[110] Congestive, Treatment:[120] Pacemaker
Abstract

Background—There are limited data regarding factors associated with spontaneous left ventricular reverse remodeling (S-LVRR) among mildly symptomatic heart failure (HF) patients and its prognostic implications on clinical outcomes.

Methods and Results—Best subsets logistic regression analysis was used to identify factors associated with SLVRR (defined as ≥15% reduction in left ventricular end systolic volume at 1-year of follow-up) among 612 patients treated with internal cardioverter defibrillator (ICD)-only therapy in MADIT-CRT, and to create a score for the prediction of S-LVRR. Cox proportional hazards regression modeling was used to assess the clinical outcome of all ICD-only patients (n = 714) with a high S-LVRR score. S-LVRR occurred in 25% of ICD-only patients. Predictors of S-LVRR included: systolic blood pressure ≥140 mmHg, serum creatinine < 1.0 mg/dl, QRS 130-160 msec, and non-ischemic cardiomyopathy. Multivariate analysis showed that each one point increment in S-LVRR score (range: 0-7) was associated with an 11% (p = 0.019) reduction in the risk of heart failure (HF) or death. Treatment with CRT-D was associated with a significant reduction in the risk of HF or death only among ICD-treated patients with a low (Q1-3) S-LVRR score (HR = 0.55; p < 0.001), but not among those with a higher (Q4) score (HR = 1.06; p = 0.72).

Conclusions—Our data suggest that approximately one quarter of mild HF patients eligible for biventricular pacing experience S–LVRR. Combined assessment of clinical factors associated with S-LVRR can be used to identify mild HF patients with a low risk for clinical events without CRT intervention.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00180271.

Key Words: left ventricular reverse remodeling, cardiac resynchronization therapy, heart failure
Cardiac resynchronization therapy (CRT-D) has proven beneficial in patients with symptomatic systolic heart failure and abnormal interventricular conduction1-7. Data from numerous studies suggest that CRT-D benefit stems from correction of ventricular dyssynchrony and left ventricular reverse remodeling (LVRR) 1-9. Such reductions in ventricular volume result in a significant reduction in heart failure hospitalization, ventricular arrhythmias and death 1, 6-8, 10.

Spontaneous LVRR (S-LVRR) as a response to medical HF therapy alone has been identified as a prognostic indicator of improved long-term outcome in patients with abnormal LV systolic function 11-20, and has also been noted in patients with prolonged QRS allocated to the control group of major CRT-D trials 1, 7. However, the predictors and prognostic implications of S-LVRR among patients with interventricular conduction delay who are eligible for CRT-D therapy remain unknown.

Accordingly, the present study was designed to: 1) identify predictors of S-LVRR in mild HF patients allocated to the internal cardioverter defibrillator (ICD)-only arm of the MADIT-CRT; 2) create a prediction score for S-LVRR; and 3) assess the clinical outcome of patients with a high likelihood to develop S-LVRR as determined by a high S-LVRR prediction score. We hypothesized that combined assessment of factors associated with S-LVRR can be used to identify mild HF patients eligible for biventricular pacing who experience improved clinical outcome without cardiac resynchronization therapy.

Methods

Study Population

The design and results of MADIT-CRT have been reported previously 1. Briefly, 1820 patients enrolled at 110 centers in the United States, Canada, and Europe who had ischemic or non-
ischemic cardiomyopathy, an ejection fraction of ≤0.30, and abnormal intraventricular
conduction with QRS ≥ 130 msec were randomized to receive CRT-D or ICD therapy in a 3:2
ratio. All patients gave informed consent and the study was approved by an institutional review
committee. Exclusion criteria included an existing indication for CRT-D, NYHA class III/IV in
the past 90 days before enrollment, the presence of atrial fibrillation or flutter at enrollment,
pacemaker in situ, and CABG or percutaneous coronary intervention or myocardial infarction
within 90 days before enrollment. The present study population included all subjects enrolled in
MADIT-CRT.

Echocardiography

Echocardiograms within the ICD arm were obtained according to a study specific protocol at
baseline, which was prior to device implantation (n = 612), and at one year (n = 612).
Echocardiographic parameters were measured in a core laboratory according to established
American Society of Echocardiography protocols. Left ventricular and left atrial volumes were
measured by Simpson’s method of discs in the apical 4- and 2-chamber views and averaged. Left
ventricular ejection fraction was calculated through relative changes in these calculated LV
volumes. LV mechanical dyssynchrony was measured using B-mode speckle tracking software
(TomTec Imaging Systems, Unterschleissheim, Germany) as reported previously. LV
dyssynchrony was determined as the standard deviation of regional time-to-peak transverse
strain, measured during systole in the 12 segments of the left ventricle (in the septum, lateral,
ANTerior and inferior walls, and separate in basal, mid and apical segments). Dyssynchrony values
are presented in milliseconds. Percent changes in dyssynchrony values are the change in time to
peak strain from baseline at one year follow up echocardiography.
Definitions

Spontaneous Left Ventricular Reverse Remodeling (S-LVRR): S-LVRR was defined as ≥ 15% reduction in LVESV at 1-year echocardiography compared with baseline values; and non-LVRR was defined as < 15% reduction in LVESV at 1-year.

End points: The primary outcome measures of the current study included the occurrence of a HF event requiring intravenous decongestive therapy as an outpatient or augmented oral or intravenous decongestive therapy as an inpatient or death.

Study Design

The study was conducted in three main steps. In the first step, we identified factors associated with S-LVRR in MADIT-CRT patients allocated to ICD-only therapy with paired echocardiograms (n = 612); in the second step we created a prediction score for S-LVRR based upon the identified predictors, and in the third step we assessed the clinical outcome from enrollment of all patients receiving an ICD who did not cross over during follow up (n = 714) by the response score, and compared the clinical benefit of CRT-D therapy between ICD patients with a high (upper quartile) vs. low S-LVRR score.

Statistical Analysis

Covariates Associated with S-LVRR

The analysis of factors associated with S-LVRR was carried out among 612 study patients allocated to ICD-only therapy with paired baseline and 1-year echocardiographic data. Characteristics of patients categorized by S-LVRR defined as per previous studies (<15% vs. ≥15% change in LVESV) were compared with student t-test or Chi square test as appropriate.

We included 31 potential clinical, electrocardiographic, and laboratory binary predictors of S-LVRR (listed in Table 1). In addition, the number of HF medications patients were receiving at
enrollment (1 to >4) was also included as a candidate covariate. Numeric variables were
dichotomized to binary with the goal of finding a simple, clinically relevant scoring method. The
cut points for the variables included in the S-LVRR score were determined based upon their
distribution and independent of variables previously shown to be predictive of CRT response. As
the identification of CRT response and patients likely to experience S-LVRR are different,
different cut points in the same variables were necessary. Thresholds for categorization of
numeric variables are provided in Table 1 were prespecified using clinical and laboratory-
accepted criteria. Univariate relationships between candidate covariates and S-LVRR (as defined
above) in the ICD arm of the trial were assessed by t tests (X^2 for binary predictors). The
covariates with values of $p < 0.20$ were further evaluated by carrying out a best-subset regression
analysis in the ICD population with paired echocardiograms, examining the models created from
all possible combinations of predictor variables, and using a penalty of 3.84 on the likelihood
ratio X^2 value for any additional factor included.

Prediction Score for S-LVRR

After selection of binary predictors, each was assigned a numeric value based on the relative
value of its regression coefficient in the multivariate regression model. The predictor with the
lowest regression coefficient among the 4 variables in the model was assigned a numeric value
of 1, and the other 3 factors were assigned numeric values based on the relative values of their
regression coefficients to that of the lowest value. The S-LVRR score was constructed in each
patient by adding the assigned numeric values for the four predictors. The score was
subsequently categorized into approximate quartile, and defined as a high (upper quartile [score
\geq4]) vs. low (quartiles 1-3 [score 0-3]) S-LVRR score. We assessed the accuracy of the
prediction model through calculation of a c-statistic for survival analysis.23 Cross validation
studies: since the development of the S-LVRR score and its application on clinical outcome was carried out on the same study population, we carried out several cross validation studies. These are described in detail in the Supplementary Appendix.

A K-fold cross validation was performed in two ways with K=10 in order to derive an understanding of the consistency of 1) the variable selection for the model predicting the echo change at 1 year and 2) the performance of the echo score in predicting the clinical outcome of heart failure or death.

The second validation used the same 10 datasets but forced the echo score model to be the 4 variable model chosen in the study on the entire data. This model was scored in each of the ten 10% hold-out datasets and again used to predict heart failure or death.

S-LVRR and Risk of Primary Endpoint

The analyses that evaluated the association between the S-LVRR score and clinical outcome were carried out in the total study population, with follow-up time beginning at enrollment.

Kaplan–Meier estimates for HF or death from enrollment, categorized by a high (Q4) vs. low (Q1-3) S-LVRR score among all ICD-only patients and in the total CRT-D group, were determined and statistically evaluated with the log-rank test. Cox proportional-hazards regression analyses were carried out among all ICD-only patients for the assessment of the risk of HF or death by the S-LVRR score (assessed both as a continuous measure and by quartile analysis).

Subsequently, Cox proportional hazards regression modeling was carried out in the total study population incorporating treatment arm as a 3 level covariate: ICD-only high (Q4) S-LVRR score, ICD-only low (Q1-3) S-LVRR score; and the total CRT-D group. The multivariate model included unbalanced variables between the two groups: age > 65, HF hospitalization within year preceding enrollment, diabetes mellitus, and indexed left atrial volume. The findings were
further adjusted for time dependent HF medication change to determine the contribution of medical therapy to the findings.

The statistical software used for the analyses was SAS version 9.3 (SAS institute, Cary, North Carolina). A two-sided p-value <0.05 was used for declaring statistical significance.

Results

Spontaneous LVRR in ICD-only patients and subsequent clinical outcome

The rate of S-LVRR for ICD patients with paired baseline and one year echocardiograms in MADIT-CRT was 25%. The clinical characteristics of ICD-only patients by the occurrence of S-LVRR are presented in Table 1. There was no significant differences between the cohort of patients with paired echocardiograms (n = 612) and the entire ICD population minus crossovers during follow up (n = 714). Patients experiencing S-LVRR comprised a higher frequency of women, had higher baseline systolic blood pressure (SBP), lower baseline serum creatinine, milder QRS prolongation, and smaller LV end diastolic volumes (Table 1). ICD non-LVRR and S-LVRR patients displayed similar average left ventricular dyssynchrony at baseline (184 ms vs. 188 ms, respectively, p = 0.90; [Figure 1: left panel]). However, at one year, S-LVRR patients significantly decreased the degree of mean left ventricular dyssynchrony compared to ICD non-LVRR patients (166 ms vs. 188 ms, p = 0.019; [Figure 1: right panel]), representing a 9% improvement vs. no change in left ventricular dyssynchrony in the respective groups.

When outcomes were assessed by LVRR status in the 612 ICD patients with paired echocardiograms, the cumulative probability of HF or death at three years of follow-up (“landmark analysis”: subsequent to the one year echocardiography assessment) was shown to be highest in ICD non-LVRR patients (30%). In contrast ICD-only patients with S-LVRR
experienced significantly lower event rates that were similar to those in the CRT-D group (21% and 19%, respectively [Figure 2]). Consistent with these findings, multivariate analysis demonstrated the S-LVRR group to be at a significant 38% lower risk of HF or death (HR 0.62 [95% CI 0.41-0.93]; p = 0.02) compared with ICD non-LVRR patients. In addition, the risk of HF or death was not significantly different between S-LVRR patients and those receiving CRT-D (HR 1.24 [95% CI 0.82 – 1.88]; p = 0.29). Furthermore, when S-LVRR patients were compared to CRT-D patients within the same range of LVESV reduction (≥15% to <44%), no significant difference in the risk of HF or death was seen (HR 1.27 [95% CI 0.87 – 2.09]; p = 0.18).

Predictors of Spontaneous LVRR

A best-subset regression analysis in the current ICD only study population identified 3 factors as being independently associated with S-LVRR. These factors (Table 2) were systolic hypertension ([SBP] ≥140 mmHg) at baseline, below median serum creatinine (< 1.0 mg/dl), and QRS duration below the upper quartile (< 170 msec). In addition, non-ischemic cardiomyopathy showed a more modest association with S-LVRR (Table 2). Given this modest association and its logical clinical inclusion in the predictive model for S-LVRR this variable was included as a predictor of S-LVRR even through its statistical association was not as strong as the other three. Individual medical HF therapies and the total number prescribed were not shown to be independently associated with S-LVRR after multivariate adjustment. In addition, echocardiographic parameters including indexed and un-indexed LV end systolic volume, LV end diastolic volume and left atrial volume were not predictive of S-LVRR at one year.
S-LVRR prediction Score

To develop a prediction score (S-LVRR score) each of these predictors was assigned a numeric value based on its relative effect in the regression model (derived from the point estimate of each covariate in the 4-variable model). The regression model showed that the contribution was low for non-ischemic cardiomyopathy; and similar for QRS duration, SBP, and serum creatinine. Accordingly, non-ischemic cardiomyopathy was assigned a numeric value of 1 and the remaining three factors a value of 2 each.

The range of prediction scores was 0 to 7 with an upper quartile of 4, a lower quartile of 2 and a median of 3 (mean of 2.75). When the accuracy of the S-LVRR prediction score was assessed the c-statistic was 0.75 indicating a reasonable to strong model for the prediction of S-LVRR.

Utility of S-LVRR score for risk assessment in ICD-only patients

The rates of spontaneous ventricular remodeling and associated three year Kaplan-Meier rates of HF or death for each prediction score are displayed in Figure 3. This analysis demonstrated a significant inverse correlation between the S-LVRR score and three year rates of HF or death (p = 0.032). Similarly, the rates of S-LVRR dependent upon the S-LVRR prediction score among ICD-only patients were also inversely correlated with three year rates of clinical events (p = 0.006).

When the prediction score is applied to all ICD patients minus crossovers during follow up (n = 714), those with a higher (upper quartile) score were shown to experience a significant lower rate of HF or death at 4-years of follow-up from enrollment compared with those possessing a lower score (23% and 39%, respectively). Furthermore, patients with a high S-LVRR score who were treated with ICD-only therapy experienced similar event rates at 4-years
of follow-up as those who were treated with cardiac resynchronization therapy (23% for high S-LVRR score and 24% for CRT-D; Figure 4).

Consistent with the univariate findings, multivariate analysis (Table 3) showed that each one-point increment in the S-LVRR score was associated with a significant 13% reduction (HR 0.87, p = 0.005) in the risk of HF or death in patients treated with ICD-only therapy. Furthermore, ICD-only patients with an upper quartile S-LVRR score experienced a significant 42% reduction in HF or death (HR 0.58, p = 0.001) compared to ICD patients with a lower S-LVRR score, (Table 3).

An additional separate analysis for the risk of VT/VF (ICD Shock) or death dependent upon an elevated (upper quartile) S-LVRR score was performed in the entire ICD only population and did not display a significant association (HR 0.80, 95% CI 0.56 – 1.14, p = 0.22). In addition, the S-LVRR score was applied to the CRT-D population without any predictive value for HF or death at the same upper quartile cutoff (HR 0.90, 95% CI 0.65 - 1.23, p value 0.51).

Sensitivity analyses were carried out in order to validate the internal consistency of the findings. The results of the cross validation analyses are provided in detail in the Supplementary Appendix.

Discussion

Our findings from the MADIT-CRT population have several important implications for patients with mildly symptomatic HF and an indication for CRT. We have shown that: 1) one quarter of mild HF patients meeting criteria for CRT will exhibit S-LVRR on medical therapy alone, characterized by spontaneous improvements in dyssynchrony and a low risk for clinical events.
that is similar to those treated with cardiac resynchronization therapy; 2) simple baseline clinical parameters can be used to identify patients who will experience S-LVRR; and 3) combined assessment of S-LVRR predictors can be utilized to identify mild HF patients eligible for biventricular pacing who will experience improved clinical outcome without CRT implantation.

Predictors of Spontaneous LVRR

Multiple echocardiographic parameters have been utilized within the literature to identify LVRR. In an effort to remain consistent with existing data, and to identify a simple single parameter that identifies S-LVRR, we utilized an un-indexed reduction in LVESV of 15%. This simple cutoff allows rapid and straightforward identification of S-LVRR within common clinical practice. With the consistency and strength of the prognostic significance of LVRR defined in this fashion, along with its simplicity, it can be identified as standard in patients with LV dysfunction and mildly symptomatic HF.

Possible mechanism related to predictors of S-LVRR and associated improvements in dyssynchrony appear to be multi-factorial. Hypertensive patients were more likely to experience S-LVRR and a favorable prognosis, possibly due to: (1) the greater left ventricular stroke work required to maintain such systolic blood pressures indicates a healthier left ventricle and greater myocardial reserve among patients with left ventricular dysfunction and/or (2) hypertensive HF patients are more likely to receive and tolerate target doses of evidence based medical therapy for HF and derive their benefit. In addition, it is possible that in a subset of patients with hypertensive-induced cardiomyopathy, more aggressive treatment of hypertension in the setting of a clinical trial may lead to a greater degree of S-LVRR. The paradoxical prognostic implications of hypertension within the HF population have been described previously and our findings are consistent and supporting.\(^{12,24-25}\)
Patients without ischemic cardiovascular disease and a QRS duration that was not extremely (in the range of 130-160 msec) long were also more likely to experience S-LVRR. These findings support left ventricular substrates contribution to the potential for S-LVRR: patients without significant LV scarring (ischemic cardiomyopathy) or profound dyssynchrony (very long QRS duration) were more likely to experience S-LVRR without the aid of CRT. Elevated serum creatinine appears to be an indicator of the severity of co-morbid illness and not a direct contributor to the prevention of LVRR. It is interesting that serum creatinine and not GFR was associated with S-LVRR and outcome. This finding may be due to the fact that a serum creatinine level of 1.0 mg/dL may be a more sensitive marker for S-LVRR compared with the MDRD thresholds used to categorize GFR. It is also possible that patients with higher serum creatinine and muscle mass but preserved renal function may have not received aggressive HF therapy with ACE inhibitors or ARB’s and thus less likely to experience S-LVRR. In addition lower blood pressure leading to decreased renal perfusion with an increase in serum creatinine may be acting as a surrogate for the health of the LV and reversibility of its dysfunction.

It is important to note that all of the predictors appear to either influence or be influenced by the aggressiveness of medical therapy and stress its early application prior to irreversible adverse left ventricular remodeling. Of note, individual HF agent classes (beta blockers, ACE inhibitors/ARB’s, aldosterone antagonists, etc.) and the cumulative number of them being received by the patients at device implant were not shown to be predictive of S-LVRR after multivariate adjustment. This may relate to the inability of patients with lower blood pressure or impaired renal function to tolerate multiple classes of HF therapeutic agents.

Limiting medical therapy as a possible explanation for the development of S-LVRR and subsequent clinical benefit is the consistency of the findings when they are adjusted for change.
in medical HF therapy (beta blockers, ACE inhibitors, ARB’s and aldosterone antagonists). However, MADIT-CRT was not designed to assess the efficacy of medical HF therapy on outcome and any conclusions regarding its role as a mechanism for S-LVRR are difficult.

Spontaneous LVRR and Subsequent Outcome

To our knowledge, this is the first study in the modern CHF therapy era to compare the prognostic significance of S-LVRR among mild HF patients who are eligible for cardiac resynchronization therapy. The present findings suggest that the prognosis of patients who experience S-LVRR is favorable and comparable to those who are treated with cardiac resynchronization therapy. The primary difference between CRT and S-LVRR is the incidence of LVRR within each group. Ninety percent of CRT-D patients experienced LVRR, which is dramatically more frequent than the rate of spontaneous remodeling seen in the ICD arm (25%). It is interesting that S-LVRR was associated with improvements in echocardiographic dyssynchrony, as this is presumed to be a predominately electrical (and subsequently mechanical) phenomenon addressed only by CRT. This finding is consistent with other studies examining dyssynchrony change within the ICD arm of MADIT-CRT.22, 26

A number of studies have examined the incidence and prognostic significance of spontaneous or medical therapy associated LVRR 11-20, and extend prior data to patients who are currently eligible for CRT implantation. Most recently, Merlo et al 12 examined S-LVRR defined utilizing a number of echocardiographic parameters (improvement in LVEF and reductions in LVEDV) in a cohort of 242 idiopathic dilated cardiomyopathy patients finding an S-LVRR incidence of 37%. In similar fashion to this study, S-LVRR was associated with significant reductions in HF, death or heart transplant through a follow up of almost 10 years. Consistent with our findings, increasing baseline systolic blood pressure (each 10 mmHg increase) was
associated with S-LVRR at echocardiographic follow up. This provides further evidence that systolic hypertension is a good prognostic sign in patients with mild HF due to impaired systolic function.25

In an effort to predict S-LVRR within our ICD only (medically treated) population, we developed a prediction score based upon the identified independent predictors of S-LVRR. The primary application of this score appears to be the identification of patients who are most likely to experience S-LVRR, and therefore may possibly be that be managed with optimal medical therapy and defibrillator therapy alone, with clinical and echocardiographic follow-up prior to a decision regarding the need for upgrade to a CRT-D device. In contrast, the present findings also support an important role for early CRT-D intervention in mild HF patients who are unlikely to experience S-LVRR.

Study Limitations
The primary limitation of this study is that it is a post-hoc analysis of a randomized clinical trial that was not designed to identify factors associated with S-LVRR. In addition, independent validation of this score in a similar CRT-D eligible population is required prior to widespread application and is lacking here. However, as this study involves the entire arm of a randomized trial with complete echocardiographic and follow up data this limitation portends a relatively minor bias. Moreover, after adjustment for baseline differences the findings regarding the prognostic significance of S-LVRR were unchanged and emphasize their strength.

The predictors of S-LVRR and the resulting prediction score include a number of variables that have been shown to carry a good prognosis in the HF population. Therefore, it is possible that the predictive value of the S-LVRR model may be somewhat independent of S-LVRR. In addition, it should be noted only three variables out of the thirty tested show a p-value
below the 0.05 level. Therefore, if multiple comparisons were accounted for none of the predictors would be likely to show a significant correlation with S-LVRR. This study is only applicable to patients with mild congestive heart failure eligible for CRT-D, while currently there is little data regarding factors affecting spontaneous LVRR and subsequent outcomes among CRT-eligible patients with more advanced HF symptoms.

The thresholds used to categorize predictors of S-LVRR in the present study were prespecified based on their frequency among study patients. These variable thresholds may vary from those previously identified as predictive of CRT response (such as a QRS >150 msec) since the latter cutoffs may not be applicable to patients who are not treated with cardiac resynchronization therapy. In addition, as real world patients are not truly binary, it is often the discretion of the bedside clinician to determine what side of the binary definition they fit better, which may limit the real world clinical applicability of the S-LVRR prediction score.

Conclusions and Clinical Implications

Our findings suggest that baseline factors that are associated with S-LVRR can be used to identify patients who are at increased likelihood of experiencing S-LVRR and may therefore not derive benefit from CRT. Furthermore, we have shown that the prognosis of ICD patients meeting MADIT-CRT entry criteria is directly related to the number of factors associated with S-LVRR present in an individual patient. These findings, if appropriately validated in similar populations of ICD recipients, may be used for improved selection of patients unlikely to experience spontaneous LVRR, thereby requiring early CRT intervention, or those in whom a more conservative approach may be attempted prior to CRT implantation.
Disclosures

The MADIT-CRT study was supported by a research grant from Boston Scientific, St. Paul, Minnesota, to the University of Rochester School of Medicine and Dentistry. Dr. Alon Barsheshet is a Mirowski-Moss Career Development Awardee in Cardiology.

References

21. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ. Recommendations for chamber quantification: A report from the american society of echocardiography's guidelines committee and the chamber quantification writing group, developed in conjunction with the european association of

Table 1. Baseline clinical characteristics for patients with and without S-LVRR

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>S - LVRR N = 154</th>
<th>No LVRR N = 458</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at enrollment (years)</td>
<td>64.9 ± 11.0</td>
<td>64.1 ± 10.6</td>
<td>0.43</td>
</tr>
<tr>
<td>Age > 65 years</td>
<td>54</td>
<td>52</td>
<td>0.64</td>
</tr>
<tr>
<td>Female</td>
<td>29</td>
<td>22</td>
<td>0.045</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>26</td>
<td>30</td>
<td>0.37</td>
</tr>
<tr>
<td>Hypertension</td>
<td>64</td>
<td>64</td>
<td>0.97</td>
</tr>
<tr>
<td>Currently Smoking</td>
<td>13</td>
<td>12</td>
<td>0.74</td>
</tr>
<tr>
<td>Ischemic NYHA Class I</td>
<td>14</td>
<td>17</td>
<td>0.35</td>
</tr>
<tr>
<td>Ischemic NYHA Class II</td>
<td>36</td>
<td>38</td>
<td>0.54</td>
</tr>
<tr>
<td>Non Ischemic</td>
<td>51</td>
<td>45</td>
<td>0.20</td>
</tr>
<tr>
<td>Serum Cr (mg/dl)</td>
<td>1.10 ± 0.26</td>
<td>1.19 ± 0.35</td>
<td>0.029</td>
</tr>
<tr>
<td>Serum Cr > 1.0 mg/dl</td>
<td>66</td>
<td>74</td>
<td>0.09</td>
</tr>
<tr>
<td>GFR (ml/min/1.73 m²)</td>
<td>63.4 ± 16.5</td>
<td>64.8 ± 16.5</td>
<td>0.38</td>
</tr>
<tr>
<td>GFR < 50 ml/min/1.73 m²</td>
<td>23</td>
<td>22</td>
<td>0.76</td>
</tr>
<tr>
<td>BUN (mg/dl)</td>
<td>21.0 ± 7.7</td>
<td>22.3 ± 10.0</td>
<td>0.32</td>
</tr>
<tr>
<td>BUN > 25 mg/dl</td>
<td>23</td>
<td>26</td>
<td>0.37</td>
</tr>
<tr>
<td>QRS (msec)</td>
<td>156.3 ± 17.4</td>
<td>160.3 ± 21.2</td>
<td>0.098</td>
</tr>
<tr>
<td>QRS < 170 msec</td>
<td>78</td>
<td>70</td>
<td>0.061</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>121.8 ± 17.1</td>
<td>120.5 ± 17.9</td>
<td>0.25</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>71.4 ± 11.3</td>
<td>70.6 ± 10.2</td>
<td>0.26</td>
</tr>
<tr>
<td>LBBB</td>
<td>70</td>
<td>71</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Medications

<table>
<thead>
<tr>
<th></th>
<th>S - LVRR N = 154</th>
<th>No LVRR N = 458</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-blockers</td>
<td>92</td>
<td>93</td>
<td>0.42</td>
</tr>
<tr>
<td>ACEI or ARB</td>
<td>97</td>
<td>95</td>
<td>0.51</td>
</tr>
<tr>
<td>Aldosterone antagonist</td>
<td>32</td>
<td>31</td>
<td>0.65</td>
</tr>
<tr>
<td>Diuretics</td>
<td>65</td>
<td>67</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Echocardiography

<table>
<thead>
<tr>
<th></th>
<th>S - LVRR N = 154</th>
<th>No LVRR N = 458</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEF (%)</td>
<td>23.9 ± 5.2</td>
<td>23.5 ± 5.2</td>
<td>0.49</td>
</tr>
<tr>
<td>LVEDV/BSA (ml)</td>
<td>121.7 ± 26.7</td>
<td>126.4 ± 30.9</td>
<td>0.075</td>
</tr>
<tr>
<td>LVESV/BSA (ml)</td>
<td>87.2 ± 22.5</td>
<td>90.1 ± 24.7</td>
<td>0.17</td>
</tr>
<tr>
<td>LAV/BSA (ml)</td>
<td>47.2 ± 10.4</td>
<td>46.4 ± 9.6</td>
<td>0.87</td>
</tr>
<tr>
<td>Baseline Dyssynchrony</td>
<td>184 ± 61</td>
<td>188 ± 67</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Data are presented as percentage or mean ± standard deviation.
ACEI = angiotensin converting enzyme inhibitors; ARB = angiotensin receptor blockers; BUN = blood urea nitrogen; LAV = left atrial volume; LBBB: = left bundle branch block; LVEF = left ventricular ejection fraction; LVEDV = left ventricular end diastolic volume; LVESV = left ventricular end systolic volume.
ventricular end systolic volume; NYHA = New York Heart Association functional class. S-LVRR = spontaneous left ventricular reverse remodeling.
Table 2. Predictors of spontaneous left ventricular remodeling at one year echocardiogram

<table>
<thead>
<tr>
<th>Remodeling Predictors</th>
<th>OR</th>
<th>95% CI</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline SBP ≥ 140 mmHg</td>
<td>1.65</td>
<td>1.02 - 2.69</td>
<td>0.042</td>
</tr>
<tr>
<td>Creatinine < 1.0 mg/dl</td>
<td>1.56</td>
<td>1.03 - 2.38</td>
<td>0.035</td>
</tr>
<tr>
<td>QRS duration < 170 msec</td>
<td>1.47</td>
<td>1.14 - 1.67</td>
<td>0.011</td>
</tr>
<tr>
<td>Non-Ischemic Cardiomyopathy</td>
<td>1.29</td>
<td>0.94 - 1.52</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Table 3. Multivariate analysis: Risk of heart failure and death by S-LVRR score and device received*

<table>
<thead>
<tr>
<th>Study Group</th>
<th>HF or Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
</tr>
<tr>
<td>All ICD-only patients:</td>
<td></td>
</tr>
<tr>
<td>S-LVRR score assessed as a continuous measure:</td>
<td>0.87</td>
</tr>
<tr>
<td>Each Increase in S-LVRR Score</td>
<td></td>
</tr>
<tr>
<td>S-LVRR score dichotomized at upper quartile:</td>
<td>0.58</td>
</tr>
<tr>
<td>High vs. Low S-LVRR Score</td>
<td></td>
</tr>
</tbody>
</table>

*All analyses included follow-up time from enrollment in the trial.

All ICD patients = patients successfully receiving an ICD (n = 713) compared to n = 612 that the S-LVRR score was derived from. High LVRR Prediction Score = Prediction Score ≥ 4 (Upper Quartile); Low LVRR Prediction Score = Prediction Score < 4 (Lower Three Quartiles).

Findings are further adjusted for: age > 65, time dependent HF medication change, prior HF hospitalization within year preceding enrollment, diabetes mellitus, and indexed left atrial volume.
Figure Legends

Figure 1. Dyssynchrony scores at baseline and one year by remodeling status. Mean baseline and one year dyssynchrony values for patients with (blue bars) and without (red bars) spontaneous LVRR in the ICD arm of MADIT-CRT.

LV dyssynchrony was determined as the standard deviation of regional time-to-peak transverse strain, measured during systole in the 12 segments of the left ventricle with values presented in milliseconds.

LVRR = left ventricular reverse remodeling

Figure 2. Kaplan-Meier estimates of the cumulative probability of HF or death from one year echocardiogram by spontaneous LVRR for the ICD population and for patients with CRT-D induced LVRR (study patients who died before the 1-year echocardiographic assessment were excluded from the analysis)/

CRT-D LVRR = CRT-D patients with left ventricular reverse remodeling; non-LVRR = ICD patients without spontaneous left ventricular reverse remodeling; s-LVRR = ICD patients with spontaneous left ventricular reverse remodeling.

Figure 3. Percent of patients with each spontaneous LVRR prediction score experiencing spontaneous LVRR and their 3-Year Kaplan-Meier rate of HF or Death.

LVRR = left ventricular reverse remodeling

* p = 0.006; †p = 0.032

Figure 4. Kaplan-Meier estimates of the cumulative probability of the primary endpoint from enrollment by upper quartile S-LVRR prediction score and device received.

(Low Pred. Score = S-LVRR score below upper quartile; High Pred. Score = S-LVRR score above upper quartile; CRT-D = total CRT-D group).
Unadjusted P<0.001

<table>
<thead>
<tr>
<th>Patients at Risk</th>
<th>CRT-D group</th>
<th>ICD-S-LVRR</th>
<th>ICD non-S-LVRR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>732</td>
<td>154</td>
<td>457</td>
</tr>
<tr>
<td>TIME (Years) after 1 year Echo</td>
<td>661 (0.07)</td>
<td>141 (0.07)</td>
<td>380 (0.15)</td>
</tr>
<tr>
<td></td>
<td>398 (0.12)</td>
<td>97 (0.15)</td>
<td>234 (0.22)</td>
</tr>
<tr>
<td></td>
<td>112 (0.19)</td>
<td>51 (0.21)</td>
<td>100 (0.30)</td>
</tr>
</tbody>
</table>
Predictors of Spontaneous Reverse Remodeling in Mild Heart Failure Patients with Left Ventricular Dysfunction
Andrew Brenyo, Alon Barsheshet, Valentina Kutyifa, Anne-Christine Ruwald, Mohan Rao, Wojciech Zareba, Anne-Catherine Pouleur, Dorit Knappe, Scott D. Solomon, Scott McNitt, David T. Huang, Arthur J. Moss and Ilan Goldenberg

Circ Heart Fail. published online April 30, 2014;
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/early/2014/04/30/CIRCHEARTFAILURE.113.000929

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2014/04/30/CIRCHEARTFAILURE.113.000929.DC1
SUPPLEMENTAL MATERIAL

K-fold cross validation for echo response score

Methodology

A K-fold cross validation was performed in two ways with K=10 in order to derive an understanding of the consistency of 1) the variable selection for the model predicting the echo change at 1 year and 2) the performance of the echo score in predicting the clinical outcome of heart failure or death. This type of approach was used as opposed to a more straight forward model validation process because it was felt that there were not enough study data to create reasonably large datasets with sufficient endpoints for both model development and validation.

In the first validation, the data were randomly parsed into 10 mutually exclusive groups, from which there were 10 sets of model development data made of 90% of the data with a different 10% held out for validation in each case. A logistic regression model using a stepwise selection process with a significance level of 0.10 was used for each version of the echo response predictive model development data thus allowing the models to be different from the one chosen in the original analysis. Next, each of the 10 hold-out datasets was scored with its replication-specific model and these scores were then used to predict clinical outcome of Heart Failure or Death using both a continuous echo-score predictor and the upper quartile, as was reported in Table 3 of the manuscript.

The second validation used the same 10 datasets but forced the echo score model to be the 4 variable model chosen in the manuscript on the entire data. This model was scored in each of the ten 10% hold-out datasets and again used to predict Heart Failure or Death.

Results – Variable selection

Not surprisingly, as each model was derived on 90% of the data, in the first validation the covariates chosen were fairly consistent with the original four. Specifically, three of the original four variables (SBP > 140 mmHg, Creatinine<1.0 mg/dl and QRS < 170 ms) were chosen between 70% and 90% of the time and Ischemic status chosen 40% of the time. A few other variables were added in 10%-20% of the replications.

Results – Score performance in predicting clinical outcome

In the first validation, across the 10 separate holdout samples for the continuous score the median hazard ratio was 0.82, with an interquartile range (IQR) of 0.17 (25%ile=0.74, 75%ile=0.91). The echo score dichotomized at the 3rd quartile had a median hazard ratio of 0.23, IQR of 0.50 (25%ile=0.10, 75%ile=0.60).

In the second validation, across the 10 separate holdout samples for the continuous score the median hazard ratio was 0.81, with an IQR of 0.24 (25%ile=0.74, 75%ile=0.98). The echo score
dichotomized at the 3rd quartile had a median hazard ratio of 0.36, IQR of 0.58 (25%ile=0.21, 75%ile=0.80).

It should be understood that the percent of data above the Q3 dichotomization in the hold out samples varied substantially which is not surprisingly given they were based on 10% of the data and therefore fairly coarse.

To review, the main findings were that the continuous echo-score had a hazard ratio of 0.87 (95% CI: 0.80-0.96) and the upper-quartile dichotomized score had a hazard ratio of 0.58 (95% CI: 0.41-0.81). We believe the median validation hazard ratios shown above demonstrate sufficient consistency, especially in the case of the continuous echo-score, with the main findings to warrant confidence in the estimates reported in the manuscript.