Atrial Natriuretic Peptide Locally Counteracts the Deleterious Effects of Cardiomyocyte Mineralcorticoid Receptor Activation

Nakagawa et al: Cardiac Imbalance Between ANP and Aldosterone

Hitoshi Nakagawa, MD1,2; Heike Oberwinkler1; Viacheslav O. Nikolaev, PhD3; Birgit Gaßner1; Sandra Umbenhauer4; Helga Wagner4; Yoshihiko Saito, MD5; Hideo A. Baba, MD6*; Stefan Frantz, MD2,4*; Michaela Kuhn, MD1,2*

1Institute of Physiology and 2Comprehensive Heart Failure Center, University Würzburg, Würzburg, Germany; 3Emmy Noether Group of the DFG, Department of Cardiology and Pneumology, University Göttingen, Göttingen, Germany; 4Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany; 5First Department of Internal Medicine, Nara Medical University, Kashihara, Japan; and 6Institute of Pathology, University Duisburg-Essen, Essen, Germany

*These authors contributed equally to this work.

Correspondence to
Michaela Kuhn
Physiologisches Institut der Universität Würzburg
Röntgenring 9
D - 97070 Würzburg, Germany
Tel.: (49) 931 31 82721
Fax: (49) 931 31 82741
Email: michaela.kuhn@mail.uni-wuerzburg.de

DOI: 10.1161/CIRCHEARTFAILURE.113.000885

Journal Subject Codes: [148] heart failure – basic studies; [145] Genetically altered mice; [128] ACE/Angiotensin receptors
Abstract

Background—The endocrine balance between atrial natriuretic peptide (ANP) and the renin-angiotensin-aldosterone system is critical for the maintenance of arterial blood pressure and volume homeostasis. This study investigated whether a cardiac imbalance between ANP and aldosterone, towards increased mineralcorticoid receptor (MR) signaling, contributes to adverse left ventricular (LV) remodeling in response to pressure overload.

Methods and Results—We used the MR-selective antagonist eplerenone to test the role of MRs in mediating pressure overload-induced dilatative cardiomyopathy of mice with abolished local, cardiac ANP activity. In response to 21-days of transverse aortic constriction (TAC), mice with cardiomyocyte-restricted inactivation (KO) of the ANP receptor (guanylyl cyclase (GC)-A) or the downstream cGMP-dependent protein kinase I (cGKI) developed enhanced LV hypertrophy and fibrosis together with contractile dysfunction. Treatment with eplerenone (100 mg/kg/day) attenuated LV hypertrophy and fully prevented fibrosis, dilatation and failure. TAC induced the cardiac expression of profibrotic CTGF and attenuated the expression of SERCA2a in KO mice, but not in controls. These genotype-dependent molecular changes were similarly prevented by eplerenone. ANP attenuated the aldosterone-induced nuclear translocation of MRs via GC-A/cGKI in transfected HEK 293 cells. Co-immunoprecipitation and FRET experiments demonstrated that a population of MRs were membrane-associated in close interaction with GC-A and cGKI, and moreover, that aldosterone caused a conformational change of this membrane MR/GC-A protein complex which was prevented by ANP.

Conclusions—ANP counterregulates cardiac MR activation in hypertensive heart disease. An imbalance in cardiac ANP/GC-A (inhibition) and aldosterone/MR signaling (augmentation) favors adverse cardiac remodeling in chronic pressure overload.

Key Words: heart failure; natriuretic peptide; angiotensin; aldosterone
Compensated hypertensive left ventricular (LV) hypertrophy can progress to adverse remodeling and heart failure (HF) with poor prognosis. Neurohormones play an important role in the complex multiorgan and cellular alterations in HF. Excessive activation of vasoconstricting and pro-proliferative systems such as the sympathetic and the renin-angiotensin II (Ang II)-aldosterone (RAA) systems has detrimental effects. In particular, cardiac expression and activity of the mineralcorticoid receptor (MR; a ligand-dependent transcription factor) is increased in HF (1). MR antagonism limits the transition to HF in experimental models of hypertensive or ischemic cardiac remodeling and diminishes morbidity and mortality in patients with severe HF (2). Although MR is expressed in both cardiac myocytes and fibroblasts, it appears myocyte MR plays the major pathophysiological role (3). This is reflected following genetic myocyte-restricted ablation of the MR in mice, which improves ventricular function and remodeling in ischemic or hypertensive HF (3,4). In contrast, cardiomyocyte MR overexpression induces arrhythmias (5) and worsens Ang II-induced remodeling (6). The mechanisms mediating the deleterious effects of cardiomyocyte MR activation remain poorly understood.

The cardiac hormones atrial (ANP) and B-type natriuretic peptides (BNP) are the main endogenous antagonists of the RAA system (7). They share a cyclic GMP (cGMP) -producing guanylyl cyclase (GC)-A receptor. ANP and BNP, via GC-A, attenuate juxtaglomerular renin as well as adrenal aldosterone release and counteract the vasoconstrictive and antinatriuretic actions of Ang II and aldosterone. Thereby NPs moderate the hypertensive and hypervolemic actions of the RAA system (7). In addition, experimental and clinical studies indicate that ANP/BNP not only exert endocrine but also local, cardioprotective actions. Experimentally, overexpression of GC-A in cardiomyocytes attenuated hypertensive or ischemic heart disease (8). Conversely, conditional, cardiomyocyte-specific inactivation of GC-A exacerbated hypertensive cardiac remodeling (9). Similar alterations were observed in mice with cardiomyocyte disruption of cGMP-
dependent protein kinase I (cGKI), indicating that this kinase is one downstream target mediating the protective actions of NPs in the heart (10,11). Consistent with these experimental observations, a number of approved or investigational treatments of HF enhance intracellular cGMP signaling (12,13).

Of note, cardiac hypertrophy is accompanied by GC-A desensitization which impairs the systemic and also the local actions of ANP and BNP (14-16). As already mentioned, aldosterone levels and MR activity are concomitantly enhanced (1,2). Here we hypothesized that the resulting shift in the local cardiac balance between NPs and aldosterone towards increased MR signaling contributes to the progression from hypertrophy to HF. Accordingly, the goals of this study were (1) to test whether a selective MR antagonist, eplerenone, prevents pressure-overload induced adverse cardiac remodeling in mice with cardiomyocyte-restricted inactivation of the NP/GC-A/cGKI signaling pathway, and (2) to dissect the molecular mechanism(s) favoring adverse hypertensive cardiac remodeling subsequent to a cardiac imbalance between ANP/GC-A (attenuation) and aldosterone/MR (augmentation) signaling.

Methods

Detailed methods are described in the Data Supplement.

Genetic mouse models

Mice with cardiomyocyte (CM)-restricted deletion of either GC-A (CM GC-A KO) or cGKI (CM cGKI KO) and their respective control (CTR) littermates (GC-A<sup>Δβ</sup>, cGKI<sup>Δβ</sup>) were generated by αMHC-Cre/loxP technology as described previously (9,11). All study mice were aged 2-3 months. KO and respective CTR mice were compared in all experiments. The studies complied with the Guide for the Care and Use of Laboratory Animals (NIH publication no. 85-23, revised 1996) and were approved by the animal care committee of the University of Würzburg.
Animal studies

Surgical transverse aortic constriction (TAC, 21 days) or sham-operation were performed as described previously (11). Two weeks before TAC, littermates were randomly assigned to regular chow or chow containing the MR antagonist eplerenone (100 mg/kg body weight (BW) per day). Arterial blood pressure was measured in awake mice by tail cuff (9). Echocardiography was performed under light isoflurane anaesthesia before and 3 weeks after TAC (11). Mice were then sacrificed, the left ventricles (LV), lungs and tibias were dissected, and LV samples were frozen in liquid nitrogen (for protein or mRNA extraction) or fixed in 4% buffered formaldehyde (for histology and immunohistochemistry) (9,11).

Histology and Immunohistochemistry

Because dilatative cardiomyopathy is accompanied by increases in myocyte length rather than thickness, we measured the longitudinal instead of cross sectional areas of single cardiomyocytes. Longitudinal cardiomyocyte areas (~length x width) were determined on LV sections stained by diastase-periodic acid Schiff (PAS, which stains the sarcolemma) and simultaneously subjected to immunohistochemistry with antibodies directed against pan-cadherin (Cell Signaling, Frankfurt, Germany). This highlighted the intercalated disks and allowed discrimination of longitudinal margins, as previously described (17). The extent of myocardial fibrosis was determined on sequential LV sections stained with 0.1% picrosirius red (11). LV expression of connective tissue growth factor (CTGF) protein was examined by immunohistochemistry (antibody from Abcam, Cambridge, UK) (11).

Protein and gene expression

Western blotting was performed to analyze LV expression levels of SERCA2a (antibody from Badrilla, Leads, UK), phosphorylated vs total ERK1/2 and GAPDH (antibodies from Cell Signaling). LV CTGF mRNA expression levels were quantified by real time RT-PCR as described recently (11).
Studies in transfected HEK 293 cells

Because the commercially available anti-MR antibodies were not suitable for immunohistochemical stainings of murine hearts or isolated cardiomyocytes, we studied the expression and interactions of GC-A with MR in overexpressing HEK 293 cells. As previously described (15,18), HEK 293 cells (Invitrogen, Karlsruhe, Germany) stably expressing GC-A, FLAG-tagged GC-A or cyan fluorescent protein (CFP)-tagged GC-A were transfected with plasmids encoding for enhanced green fluorescent protein (EGFP)-tagged MR and cGKI with Fugene (Roche, Mannheim, Germany). The cells were maintained in charcoal-stripped (steroid-reduced) medium. For confocal microscopy or fluorescence resonance energy transfer (FRET), 24 h after transfection the cells were seeded on coverslips, and the incubation experiments with aldosterone ± ANP were performed 24 h later. For immunoprecipitation studies, the membrane and cytosolic proteins were extracted 48 h after transfection and the membrane proteins were incubated with anti-FLAG antibody coupled to agarose beads (M2; Sigma, Taufkirchen, Germany) for 2 h at 4°C under rotation as described before (15,18). Aliquots of the cytosolic and membrane fractions and of the immunoprecipitated proteins were subjected to western blotting with antibodies against MR (DSHB, Iowa, USA), Hsp90 (BD Biosciences, Heidelberg, Germany), cGKI (Cell Signaling) and GC-A (18).

Statistics

The statistical distribution of the necropsy and histological data sets obtained in the in vivo studies is illustrated with boxes and whisker plots. All other data are expressed as mean ± SEM. Data were analyzed by using SPSS. Comparisons between 2 groups were performed using the unpaired Student t test. Cardiac and lung changes in response to TAC and eplerenone were analyzed by non-parametric ANOVA (Kruskal–Wallis test) followed by a Mann-Whitney test to evaluate differences between groups. Repeated-measures ANOVA was
Results

In HEK 293 cells, ANP inhibits the aldosterone stimulated nuclear translocation of the MR

We investigated whether ANP influences aldosterone-stimulated nuclear translocation of MRs in HEK 293 cells coexpressing GC-A, cGKI and EGFP-tagged MR. The nuclear vs cytoplasmic distributions of fluorescently labeled MRs were analyzed by confocal microscopy. Immunoblotting confirmed the expression of GC-A and cGKI (Figure 1, inset). Aldosterone (500 pmol/L, 1 h) induced a marked nuclear accumulation of MR-EGFP, which was significantly inhibited by ANP (10 nmol/L, pretreatment for 30 min) (Figure 1). Based on these observations we hypothesized that the local ANP/GC-A system, via cGMP/cGKI signaling, might counterregulate MR-mediated cardiac actions of aldosterone.

Eplerenone prevented adverse LV remodeling in CM GC-A KO and CM cGKI KO mice

To directly test the role of the ANP-aldosterone interaction in regulating the cardiac responses to LV pressure overload in vivo, we subjected CM GC-A KO mice or CM cGKI KO mice and respective CTR littermates to TAC for 21 days in the presence and absence of the selective MR blocker eplerenone. Since the morphological, functional and molecular responses to TAC were identical in both groups of CTR mice, these results are combined in all sections and figures throughout the manuscript.

CM GC-A KO and CM cGKI KO mice have normal Mendelian inheritance, grow normally, and have a normal life span (9,11). Under resting conditions, their arterial blood pressure as well as cardiac morphology and function are unaltered (Supplemental Table 1). Also, systolic blood pressure levels in CM GC-A KO, CM cGKI KO and control (CTR) mice subjected to TAC were similar (110 ± 2.0, 108 ± 2.8 and 109 ± 2.6 mmHg, respectively; n=6-10 per
group) and were not altered by eplerenone (111 ± 2.0, 107 ± 2.0 and 108 ± 1.8 mmHg, respectively; n=6-10). As shown in Figures 2A and 2B, TAC in CTR mice induced only mild but significant increases in LV weight (LVW)- to- tibia length (TL) ratios and myocyte longitudinal areas, and these responses were not influenced by eplerenone treatment. In CM GC-A KO and CM cGKI KO mice the cardiac hypertrophic responses to TAC were greater than in CTR mice, as shown at the organ (Figure 2A) and cellular level (Figure 2B). Even more, in both KO strains, TAC also increased the wet lung/TL ratios (Figure 2C), indicative of pulmonary congestion. In both genotypes eplerenone significantly attenuated the development of exacerbated LV hypertrophy and fully prevented pulmonary congestion after TAC (Figure 2A to 2C).

Picrosirius red stainings showed mild LV interstitial fibrosis after TAC in both eplerenone-treated and untreated CTR mice (Figure 3A). In contrast, CM GC-A KO and CM cGKI KO mice with TAC developed enhanced LV fibrosis (Figure 3A). This was associated with increased expression of the profibrotic cytokine CTGF (quantitated by RT-PCR and corroborated by immunohistochemistry; Figure 3B and 3C). In both genotypes, eplerenone fully prevented pressure-overload induced LV fibrosis and increased levels of CTGF (Figures 3A to 3C).

**Eplerenone prevented LV dilatation and dysfunction in CM GC-A KO and CM cGKI KO mice**

Echocardiography showed that LV contractility did not differ between genotypes under baseline conditions, before TAC (Figure 4; Supplemental Table 1). TAC (with and without eplerenone) did not alter LV geometry or function in CTR mice (Figure 4, left column). However, CM GC-A KO and (even more so) CM cGKI KO mice developed severe LV dilatation secondary to TAC, with increases in LV end-diastolic and end-systolic areas (EDA and ESA) and decreased fractional shortening (FS) (Figure 4). Of note, eplerenone fully prevented these morphological and functional alterations. Heart rates in CTR, CM GC-A KO
or CM cGKI KO mice were similar (574 ± 13, 578 ± 6 and 589 ± 16 bpm, respectively; see Supplemental Table 1) and were not altered by TAC (562 ± 12, 576 ± 15 and 552 ± 12 bpm, respectively) or eplerenone (562 ± 11, 603 ± 6 and 575 ± 8 bpm, respectively).

**Eplerenone prevented the decrease of LV SERCA2a expression in CM GC-A KO and CM cGKI KO mice subjected to TAC**

Immunoblot analyses showed that LV SERCA2a protein levels were unaltered in CTR mice after TAC and were not affected by eplerenone (Figure 5). In contrast, LV SERCA2a expression levels were markedly attenuated in both groups of KO mice 3 weeks after TAC (Figure 5). Notably, this decrease was almost fully prevented by eplerenone treatment (Figure 5). As shown in Figure 5, TAC provoked significant increases in LV levels of phosphorylated ERK1/2, without differences between genotypes and treatment groups.

**Association of plasma membrane GC-A and MR proteins in HEK 293 cells**

Lastly, we investigated whether a GC-A/MR colocalization may partly underlie the antagonistic actions of these receptors. For coIP experiments, MR was transiently coexpressed in HEK 293 cells together with FLAG-tagged GC-A and the membrane proteins were subjected to immunoprecipitation with anti-FLAG (M2) antibody. Western blotting demonstrated that a small fraction of MR is indeed localized at the cell membrane (Figure 6A). Even more, membrane MRs coimmunoprecipitate with GC-A, cGKI and hsp90 (Figure 6A, right panel), indicating that these proteins are part of a complex. MR immunoprecipitation was not obtained in cells transfected with MR and empty vector (Figure 6A, left).

**Single cell FRET analyses demonstrate that ANP and aldosterone modulate the interaction between GC-A and MR in HEK 293 cells**

FRET microscopy can be used to monitor protein-protein interactions in intact living cells. Intriguingly, co-expression of CFP-tagged GC-A and EGFP-tagged MR resulted in a substantial basal FRET (baseline ratio GFP/CFP of 0.164 ± 0.002) suggesting close proximity
between these receptors. Even more, their ligands, ANP and aldosterone, both induced decreases in FRET by 2-3% within 5-10 min after hormone stimulation (Figure 6B and 6C), indicative of an agonist-induced rearrangement within the GC-A/MR complex. However, pretreatment with ANP (10 min) prevented the responses to subsequent application of aldosterone (Figures 6B and 6C). These data corroborate the results of the coIP experiments indicating that GC-A receptors and a subpopulation of membrane MRs interact with each other in a dynamic, hormone-responsive way.

**Discussion**

**Principal findings.** Our observations emphasize that impaired ANP/BNP signaling in cardiomyocytes (here achieved by genetic, cardiomyocyte-restricted GC-A or cGKI inactivation in mice) does not alter baseline cardiac growth and function, but provokes dilative cardiomyopathy and pronounced LV interstitial fibrosis in response to pathological pressure-overload (induced by TAC). These morphological and functional alterations induced by TAC were associated with enhanced expression of CTGF and diminished expression of SERCA2a. Notably, myocyte hypertrophy was partially attenuated, and LV fibrosis as well as LV contractile dysfunction were almost fully prevented by treatment of the KO mice with the selective MR blocker eplerenone. MR antagonism also prevented the pressure overload-induced increases in LV CTGF and decreases of SERCA2a expression levels, which may have contributed to the observed improvement in remodeling and LV contractile function. These results provide direct evidence that MRs are involved in mediating pressure overload-evoked HF in mice with selective disruption of cardiac ANP/BNP signaling and indirect evidence for the involvement of aldosterone.

**Opposite effects of ANP/GC-A and aldosterone/MR signaling on myocardial CTGF expression and fibrosis.** The MRs bind aldosterone and glucocorticoids with similar affinity (19). The selectivity for aldosterone is achieved by the coexpression of 11β-hydroxysteroid
dehydrogenase (11β-HSD2) which inactivates glucocorticoids (20). The activity of this enzyme is very low in cardiomyocytes and, moreover, circulating concentrations of glucocorticoids are much higher than those of aldosterone (20,21). Thus, the beneficial effects of MR antagonists in our experimental, as well as in published clinical studies, may partly result from blockade of glucocorticoids binding to cardiomyocyte MR. However, a recent study by Messaoudi et al. in mice dissected specific genes regulated by aldosterone in cardiomyocytes, and demonstrated that CTGF is induced by aldosterone via the MR, whereas corticosterone had no effect (22). Conversely, ANP was shown to attenuate CTGF expression and CTGF-dependent fibrosis (23). In line with these observations, both CM GC-A KO and CM cGKI KO hearts responded to pressure overload with marked induction of CTGF which was totally prevented by eplerenone. Based on these findings we suggest that ANP, via GC-A/cGKI signaling in cardiomyocytes, counterregulates the previously established stimulatory effect of aldosterone on myocyte CTGF expression (22). An imbalance between these systems, favoring aldosterone/MR signaling, enhances myocyte expression of the fibrogenic stimulus CTGF.

A cardiac imbalance between GC-A and MR activities favors HF after chronic pressure overload. Control mice responded to chronic pressure overload with only mild and functionally well compensated cardiac hypertrophy. In contrast, both CM GC-A KO and CM cGKI KO mice developed dilatative cardiomyopathy in response to TAC, emphasizing the protective role of local NP signaling. Remarkably, eplerenone treatment had no effect on the adaptive responses of control hearts to pressure overload, but completely prevented LV dilatation and contractile dysfunction in CM GC-A KO and CM cGKI KO mice. This indicates the involvement of enhanced MR signaling in these pathological responses. In line with our observations, mice deficient in cardiomyocyte MR are protected from cardiac dilatation and failure after TAC (3). The mechanism(s) by which enhanced MR activity in cardiomyocytes leads to functional deterioration remain unclear. The profibrotic actions of
aldosterone might be involved, since myocardial fibrosis can result in excessive muscle fiber entrapment, myocyte atrophy and/or abnormal diastolic and systolic stiffness of the myocardium, each of which is sufficient for the development and progression of LV dysfunction (24). In addition, eplerenone almost fully prevented the pressure-overload dependent reduction of SERCA2a expression in CM GC-A/cGKI KO hearts. Similarly, blockade of the RAA system with angiotensin converting enzyme (ACE) inhibitors improved cardiac function in experimental ischemic heart failure by preventing the depression in SERCA2a expression and activity (25). Together, these observations suggest that a cardiac imbalance between NP and aldosterone activities impairs myocyte SERCA2a expression and stimulates interstitial fibrosis, both of which may contribute to HF.

**NPs, via GC-A, counterregulate genomic MR signaling.** Non-genomic signaling pathways of the MR, such as the transactivation of the epidermal growth factor receptor and subsequent phosphorylation/activation of the extracellular regulated kinase (ERK)1/2, have also been implicated in the transition to HF (26,27). However, although we observed increased LV levels of phosphorylated ERK1/2 in mice subjected to TAC, this response was similar in control and KO mice and was not prevented by eplerenone. Furthermore, mice with cardiomyocyte-restricted MR inactivation did not exhibit diminished cardiac pERK1/2 levels after TAC (3), indicating that ERK1/2 activation is not linked to MR signaling. Together with the aforementioned CTGF data, these results suggest that classical (genomic) MR signaling pathways participate in adverse cardiac remodeling of CM GC-A/cGKI KO mice with TAC. This hypothesis is corroborated by the observation that ANP, via GC-A/cGMP, significantly inhibited the aldosterone-stimulated nuclear translocation of the MR in HEK 293 cells (in our study) as well as in colonic epithelial cells (28). Interestingly, cGMP inhibits the nuclear translocation of another steroid receptor, the vitamin D receptor, in fibroblasts by altering its interaction with the cytoskeletal protein tubulin (29). Since cGKI can phosphorylate tubulin and microtubule-associated proteins, it was postulated that cGMP prevents dissociation of the
activated vitamin D receptor from tubulin (29). Thus, it is possible that ANP, via cGMP/cGKI, inhibits MR nuclear translocation by altering the interaction of the MR with the cytoskeletal protein transport system.

Both the GC-A receptor and the MR have been shown to be associated with the chaperone hsp90 (30,31). Even more, a small population of MR is cell membrane-associated, possibly within cholesterol-rich domains (26,32). This population detaches from the membrane in response to aldosterone (26), and might therefore contribute to the genomic actions of the hormone. A subpopulation of GC-A receptors is also localized in caveolae microdomains (33). Therefore we postulated that the functional antagonism between GC-A receptors and MRs might be mediated in part by a direct interaction between these proteins. Indeed, co-immunoprecipitation and FRET experiments demonstrated that GC-A and a portion of MRs, cGKI and hsp90 are within a macromolecular complex at the membrane of HEK 293 cells.

Intriguingly, ANP binding to GC-A or aldosterone binding to the MR both caused a conformational change of the MR/GC-A complex (as shown by FRET). Even more, this effect of aldosterone was prevented by ANP pretreatment. Together, these data suggest the existence of a signaling microdomain at the cells membrane which harbours a subpopulation of GC-A receptors and MRs. This interaction might contribute to the moderation of the genomic actions of aldosterone by ANP.

**Cardiac cell types mediating the protective effects of eplerenone.** Eplerenone antagonizes the MR-mediated effects of aldosterone in different cardiac cell types. Hence, although these studies in CM GC-A/cGKI KO mice were designed to dissect specific cardiomyocyte interactions between NPs and aldosterone, we cannot rule out that the beneficial cardiac effects of eplerenone were mediated in part by other cells such as fibroblasts, endothelial and inflammatory cells.

**Perspectives.** In HF patients, plasma levels of aldosterone, BNP and (less) ANP are elevated, correlating with the severity of the disease (1,34,35). However, despite these high NP levels,
HF is characterized by a combined deficiency of the active form of processed BNP (36) and resistance to both NPs (7,14,16,18). Due to desensitization of the GC-A receptor, NP-dependent intracellular cGMP formation and subsequent cardiovascular effects are markedly blunted (14-16). Of course the mice with genetic cardiomyocyte GC-A or cGKI ablation studied herein present an "artificial" situation of nonexistent myocyte NP signaling. However our observations in these mice suggest that a local, cardiac imbalance between the activities of the NP/GC-A (inhibition) and aldosterone/MR systems (augmentation), as occurs in HF patients, can critically contribute to adverse cardiac remodeling. Our observations support current therapeutic concepts that inhibition of the RAA system combined with augmentation of the natriuretic peptide system (with synthetic analogs or by stabilization of the endogenous hormones with inhibitors of the degrading enzyme neutral endopeptidase (12,13)) could help to prevent the transition of compensated cardiac hypertrophy to HF.

Sources of Funding
This study was supported by the Bundesministerium für Bildung und Forschung (BMBF 01 EO1004, to MK and SF).

Disclosures
None.

References


34. McKie PM, Rodeheffer RJ, Cataliotti A, Martin FL, Urban LH, Mahoney DW, Jacobsen SJ, Redfield MM, Burnett JC Jr. Amino-terminal pro-B-type natriuretic peptide and B-type

Figures Legends

Figure 1. ANP inhibits the aldosterone-stimulated nuclear translocation of the MR in transfected HEK 293 cells. GC-A-expressing HEK 293 cells were co-transfected with EGFP-tagged MR and cGKI. The nuclear-to-cytosolic ratio of EGFP-MR (as fluorescence intensity ratio) was studied by confocal microscopy. Aldosterone (500 pmol/L, 1 h) increased the nuclear localization of the EGFP-MR. ANP (10 nmol/L, pretreatment during 30 min) attenuated this effect (*P<0.05 vs aldosterone; n=3 independent experiments; 100 cells were analyzed for each condition in each separate experiment). Inset: Western Blot demonstrates the expression of GC-A and cGKI.

Figure 2. Eplerenone prevented adverse LV hypertrophy and lung congestion in CM GC-A KO and CM cGKI KO mice with TAC. Box-and-whisker plots showing (A) ratios of LV weight to tibia length (TL); (B) LV longitudinal cardiomyocyte areas (length x width of single myocytes with a centrally located nucleus; 30-50 myocytes per LV were analyzed); and (C) wet lung weight/TL from control, CM GC-A KO and CM cGKI KO mice after TAC or sham-operation. Mice with TAC received control food or eplerenone starting 2 weeks prior to surgery. n = 6-10 mice per group; *P < 0.05 vs sham, †P < 0.05 vs TAC without eplerenone treatment.

Figure 3. Eplerenone prevented augmented LV fibrosis and CTGF expression in CM GC-A KO and CM cGKI KO mice with TAC. Box-and-whisker plots showing (A) LV interstitial collagen fractions and (B) LV CTGF mRNA expression levels of control, CM GC-A KO and CM cGKI KO mice after sham- or TAC-operation (± eplerenone); n = 6-10 per group; P < 0.05 *vs sham, †vs TAC without eplerenone (vehicle). (C) Immunostaining for CTGF. LV myocardium from TAC/untreated KO mice showed diffuse and intensive staining, predominantly in cardiomyocytes, whereas TAC/eplerenone hearts showed reduced stainings.
for CTGF protein. Similar images were obtained in a total of 5 hearts per group. There was no difference between sham CTR and KO mice, and thus one representative sample is shown.

**Figure 4. Eplerenone prevented LV dilatation and dysfunction in CM GC-A KO and CM cGKI KO mice after TAC.** LV end-diastolic area (EDA), end-systolic area (ESA) and fractional shortening in percentage (FS %) from control, CM GC-A KO and CM cGKI KO mice before and 21 days after TAC, measured by echocardiography. Mice received eplerenone (black circles) or control food (white circles: vehicle) starting 2 weeks prior to surgery. n = 6-10 per group; *P < 0.05 vs basal values, before TAC (repeated-measures ANOVA), †P < 0.05 vs vehicle.

**Figure 5. LV expression levels of the Ca\(^{2+}\)-regulating protein, SERCA2a, and of phosphorylated ERK1/2 in control, CM GC-A KO and CM cGKI KO mice after TAC or sham operation.** Top: Representative Western blots. Bottom: Protein levels of SERCA2a were normalized to GAPDH; levels of phosphorylated ERK1/2 were normalized to total ERK. Ratios were calculated as x-fold respective sham-operated, vehicle (v) - treated CTR mice. n = 6-8 per group; *P < 0.05 vs sham, †P < 0.05 vs TAC/vehicle.

**Figure 6. Coimmunoprecipitation experiments and FRET reveal the association of GC-A and a subpopulation of MRs at the membrane of HEK 293 cells.** (A) Right: Coimmunoprecipitation of MR, cGKI and Hsp90 with FLAG-GC-A from membranes of cotransfected HEK 293 cells. Cytosolic (C) and membrane fractions (M) as well as membrane proteins immunoprecipitated (IP) with anti-FLAG antibody were separated on SDS-PAGE and blotted with antibodies against GC-A, cGKI, MR, and Hsp90. FT: flow through; w: wash step. Representative Western Blots of three independent experiments. Inputs were 1/10 – 1/20 of the protein used for IP. The left side of the blot (A) shows that control IPs with HEK 293 cells without GC-A expression (mock transfection) do not give similar IP reactions. (B)
Representative ratiometric recordings of single cell GFP/CFP FRET ratio signals in HEK 293 cells cotransfected with CFP-tagged GC-A and EGFP-tagged MR at baseline and during superfusion of 10 nmol/L ANP (left) or 500 pmol/L aldosterone (right), as indicated by horizontal black lines. The recordings were normalized to baseline FRET. Left: Decrease of FRET between CFP-GC-A and EGFP-MR in single HEK 293 cells treated with ANP suggests hormone-induced conformational rearrangement in the pre-formed GC-A/MR complex. Right: Likewise, stimulation with aldosterone leads to a decrease of FRET (black trace) which is inhibited after pretreatment with ANP for 10 min (grey trace). (C) Quantification of agonist-induced decreases in FRET as a % change of FRET ratio from the basal level (n = 9-13 cells from 3 independent experiments, for each group; *p<0.05 vs aldosterone alone).
Figure 2

A

Left ventricular weight (mg) / tibia length (cm)

<table>
<thead>
<tr>
<th>Sham</th>
<th>TAC</th>
<th>TAC + Eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls</td>
<td>CM GC-A KO</td>
<td>CM cGKI KO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>†</td>
<td>*</td>
<td>†</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

B

Cardiomyocyte longitudinal areas (μm²)

<table>
<thead>
<tr>
<th>Sham</th>
<th>TAC</th>
<th>TAC + Eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls</td>
<td>CM GC-A KO</td>
<td>CM cGKI KO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
<th>1400</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>†</td>
<td>*</td>
<td>†</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Lung wet weight (mg) / tibia length (cm)

<table>
<thead>
<tr>
<th>Sham</th>
<th>TAC</th>
<th>TAC + Eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls</td>
<td>CM GC-A KO</td>
<td>CM cGKI KO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>†</td>
<td>*</td>
</tr>
</tbody>
</table>
Figure 3

A Interstitial collagen fraction (%)

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>TAC + Eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM GC-A KO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM cGKI KO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B CTGF (arbitrary units) X-fold vs sham CTRs

<table>
<thead>
<tr>
<th></th>
<th>Sham</th>
<th>TAC</th>
<th>TAC, vehicle</th>
<th>TAC + Eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM GC-A KO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM cGKI KO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>sham</th>
<th>TAC, vehicle</th>
<th>TAC, eplerenone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM GC-A KO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM cGKI KO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CM GC-A KO CM cGKI KO

200x, bar = 100 μm

Controls

X-fold vs sham CTRs

* p < 0.05
† p < 0.1
Figure 5

<table>
<thead>
<tr>
<th>Sham</th>
<th>3 weeks after TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CTR</td>
</tr>
<tr>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SERCA2a</th>
<th>GAPDH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pERK42/44</th>
<th>total ERK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Bar graph showing SERCA2a/GAPDH and pERK/total ERK levels across different conditions.](image-url)

- Sham
- CTR
- CM GC-A KO
- CM cGKI KO

- SERCA2a/GAPDH
- pERK42/44

* and † indicate statistical significance.
Figure 6

A

<table>
<thead>
<tr>
<th>MR + cGKI + mock</th>
<th>MR + cGKI + FLAG-GC-A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C  M  FT  w  IP</td>
</tr>
<tr>
<td>GC-A</td>
<td></td>
</tr>
<tr>
<td>cGKI</td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td></td>
</tr>
<tr>
<td>Hsp 90</td>
<td></td>
</tr>
</tbody>
</table>

B

ANP, 10 nmol/L

Aldosterone, 500 pmol/L

C

Decrease in FRET (%)
Atrial Natriuretic Peptide Locally Counteracts the Deleterious Effects of Cardiomyocyte Mineralocorticoid Receptor Activation
Hitoshi Nakagawa, Heike Oberwinkler, Viacheslav O. Nikolaev, Birgit Gaßner, Sandra Umbenhauer, Helga Wagner, Yoshihiko Saito, Hideo A. Baba, Stefan Frantz and Michaela Kuhn

Circ Heart Fail. published online July 15, 2014;
Circulation: Heart Failure is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3289. Online ISSN: 1941-3297

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circheartfailure.ahajournals.org/content/early/2014/07/15/CIRCHEARTFAILURE.113.000885

Data Supplement (unedited) at:
http://circheartfailure.ahajournals.org/content/suppl/2014/07/15/CIRCHEARTFAILURE.113.000885.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Heart Failure can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Heart Failure is online at:
http://circheartfailure.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

ATRIAL NATRIURETIC PEPTIDE LOCALLY COUNTERACTS THE DELETERIOUS EFFECTS OF CARDIOMYOCYTE MINERALCORTICOID RECEPTOR ACTIVATION

Hitoshi Nakagawa et al.

Expanded Methods

Transverse aortic constriction

Surgical transverse aortic constriction (TAC, 21 days) or sham-operation were performed as described previously (1,2). In brief, 8 - 12 weeks old mice with a body weight of 20-25 g were anesthetized with isoflurane (2.5%), intubated, and put on a mechanical small-animal ventilator. After thoracotomy the aorta was ligated between the innominate and left carotid artery with an overlying 27-gauge needle to generate a reproducible, discrete stenosis. After ligation, the needle was withdrawn. Sham mice underwent the same procedure without aortic ligation. Buprenorphine (0.05 - 0.1 mg/kg BW) was used for postoperative analgesia. Two weeks before TAC, littermates were randomly assigned to regular chow or chow containing the mineralcorticoid receptor (MR) antagonist eplerenone (100 mg/kg body weight (BW) per day). Arterial blood pressure was measured in awake mice by tail cuff (1,2) before, one week after starting the eplerenone treatment and 2 weeks after TAC (± eplerenone). Echocardiography was performed under light isoflurane anaesthesia before and 3 weeks after TAC (2).

Histology and immunohistochemistry

Hearts tissues were fixed in 4% paraformaldehyde, embedded in paraffin and 3 µm sections were used for stainings. The extent of myocardial fibrosis was determined on sections stained
with picrosirius red and analysed with an imaging system (KAS 300, Zeiss, Germany). Five representative fields per section at a magnification x100 were analyzed (3 sections per heart). Collagen area was determined under polarization microscopy by quantification of the red-yellow and green illuminated area due to the fact that fibrillar collagen shows birefringent properties. The total tissue area was quantified by determination of the stained area under bright field microscopy. The collagen fraction was calculated as the collagen area in % of the corresponding total tissue area (1,2).

For immunohistochemical analyses of CTGF expression, after deparaffinization without pre-treatment the antibody against CTGF (Abcam ab6992, Cambridge, UK) was applied in a dilution of 1:100 overnight at 4°C. For pan-cadherin immunostaining, deparaffinized sections were pretreated in a buffer (Dako S2367, pH 9.0) at 98°C. The antibody against pan-cadherin (Cell Signaling #4068, Frankfurt, Germany) was applied in a dilution of 1:50 at room temperature for 60 min. Both antibodies were detected by the SignalStain® Boost IHC Detection Reagent (Cell Signaling #8114), incubated for 30 min at room temperature, developed with DAB and counterstained with hematoxilin. Negative controls were performed by using the appropriate immunoglobulin or by omitting the primary antibody.

To measure longitudinal cardiomyocyte areas, slides were simultaneously subjected to immunohistochemistry with antibodies directed against pan-cadherin (which helps highlight the intercalated disks and allows discrimination of the longitudinal margins (3)) and diastase-periodic acid Schiff (PAS) reaction for cell membrane staining and removal of glycogen to allow discrimination of cell margins other than intercalated disks (3). With the combination of the two staining methods, the cell margins of the cardiomyocytes could clearly be seen in areas in which they were longitudinally oriented. Areas were estimated by tracing the fibres length and diameter (in the region of the cell nucleus). 30 - 50 myocytes with centrally located
nucleus were measured in each LV section by a computer-assisted image analysis system as described before (1-3), with the investigator blinded to the genotypes.

Plasmids

The generation of plasmids for expression of FLAG-tagged (FLAG-GC-A) and fluorescent (C-terminal CFP-tagged) GC-A in HEK 293 cells was described recently (4). The plasmid for expression of the MR with a C-terminal EGFP tag was generated by PCR-mutagenesis using the cDNA encoding human MR as template (generous gift from Dr. Somekawa, Dept. of Cardiology, University of Nara, Japan). The following primers were used to generate the cDNA coding for MR flanked by Bgl II and Hind III restriction sites: fwd—5’- T AGA TCT ACC ATG GAG ACC AAA GGC TAC CAC AGT C -3’; and rev—5’- A AAG CTT CTT CCG GTG GAA GTA GA G CGG CTT GGC G -3’. The resulting fragment was subcloned into TOPO TA cloning vector (Invitrogen, Karlsruhe, Germany) for sequence verification. After double digestion with Bgl II and Hind III the fragment was ligated into pCMV-EGFP expression vector (Takara Bio Inc., Shiga, Japan).

Analyses of nuclear MR translocation in HEK 293 cells

For confocal microscopy and coimmunoprecipitation studies, HEK 293 cells stably expressing GC-A (4, 5) were transfected with plasmids (2 µg of each plasmid per 10 cm dish) encoding for MR-EGFP and cGKI with Fugene (Roche, Mannheim, Germany). The cells were maintained in DMEM medium containing 10% (v/v) charcoal-stripped (steroid-reduced) serum (Invitrogen). 24 h after transfection, cells were seeded on poly-d-lysine-coated round glass coverslips, and the incubation experiments were performed 24 h later. To study the effect of ANP on aldosterone-induced nuclear MR translocation, cells were first pretreated with 10 nmol/L ANP (30 min; Bachem, Bubendorf, Switzerland) or vehicle and thereafter with 500 pmol/L aldosterone (1 h; Sigma, Taufkirchen, Germany). The cells were then fixed
with 4% paraformaldehyde, permeabilized with 0.1 % Triton X-100 and mounted in DAPI containing mowiol medium (Dianova, Hamburg, Germany; for staining of cell nuclei). Fluorescent images (100 cells per condition in each of 3 independent experiments) were acquired using a Leica TCS Confocal microscope equipped with the 63x objective and excitation at 488 nm. Intensity ratios of nuclear-to-cytosolic MR-EGFP were determined using the Adobe Photoshop CS5 software.

**Immunoprecipitation of GC-A and MR from HEK 293 cells**

For coimmunoprecipitation studies, transfected HEK 293 cells were cultured in medium with 10% charcoal-stripped serum for 2 days. A cell fractionation kit was applied to separate the membrane and cytosolic proteins (nano-TOOLS Antikörpertechnik, Teningen, Germany) (4,5). Membrane proteins were incubated with anti-FLAG antibody coupled to agarose beads (M2; Sigma) during 2 hours at 4°C under rotation. The beads were washed and resuspended in SDS-sample buffer. Aliquots of the cytosolic and membrane fractions and of the immunoprecipitated proteins were subjected to western blotting with antibodies against MR (DSHB, Iowa, USA; dilution 1:500), Hsp90 (BD Biosciences, Heidelberg, Germany; dilution 1:5000), cGKI (Cell Signaling; dilution 1:1000) and GC-A ((5); dilution 1:1000). An ECL system (Amersham-Pharmacia, Freiburg, Germany) was used for detection and results were quantitated by densitometry (ImageQuant software; Molecular Dynamics, Krefeld, Germany).

**Fluorescence resonance energy transfer (FRET) between GC-A and MR in HEK 293 cells**

For FRET, CFP-tagged GC-A (4) and EGFP-tagged MR were cotransfected into HEK 293 cells as described above. 24 h later, cells were seeded on poly-d-lysine-coated round glass coverslips, and the FRET microscopy experiments were performed 48 h after transfection (4, 6). Fluorescence was recorded from entire living single cells in GFP and CFP emission.
channels using 510 ± 15 nm and 475 ± 20 nm emission filters, respectively, separated by a dcrx 505 nm beam splitter. FRET was monitored as the emission GFP/CFP ratio, which was corrected offline for the spillover of CFP into the GFP channel and the direct GFP excitation. This ratio is proportional to the degree of FRET and spatial proximity between CFP (donor) and GFP (acceptor) fluorophores and sensitive to the degree of protein-protein interaction and conformational rearrangements in the protein-protein complex. To study ligand-induced changes in FRET and GC-A/MR interaction, cells were treated with FRET buffer supplemented with ANP or aldosterone.

References


Supplemental Table 1. Baseline cardiovascular parameters of CM GC-A KO mice vs control littermates and CM cGKI KO mice and respective control littermates. Systolic (SBP) and diastolic (DBP) blood pressure levels were determined in awake, trained mice by tail cuff. Heart rate and LV ejection fraction (EF) were determined by echocardiography.

<table>
<thead>
<tr>
<th></th>
<th>CTR (GC-A^{fl/fl}) n = 8</th>
<th>CM GC-A KO n = 10</th>
<th>CTR (cGKI^{fl/fl}) n = 9</th>
<th>CM cGKI KO n = 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBP, mmHg</td>
<td>66 ± 2.6</td>
<td>67 ± 3.4</td>
<td>68 ± 2.4</td>
<td>69 ± 3.5</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>109 ± 2.8</td>
<td>110 ± 2.0</td>
<td>109 ± 2.4</td>
<td>108 ± 2.8</td>
</tr>
<tr>
<td>Body weight (BW, g)</td>
<td>20.3 ± 0.9</td>
<td>20.4 ± 0.6</td>
<td>20.3 ± 0.9</td>
<td>21.4 ± 0.7</td>
</tr>
<tr>
<td>Heart weight (HW, mg)</td>
<td>100.5 ± 4.5</td>
<td>102.8 ± 5.1</td>
<td>101.5 ± 2.9</td>
<td>104.9 ± 0.7</td>
</tr>
<tr>
<td>HW/BW (mg/g)</td>
<td>4.9 ± 0.1</td>
<td>5.0 ± 0.1</td>
<td>5.0 ± 0.2</td>
<td>4.9 ± 0.1</td>
</tr>
<tr>
<td>HW/tibia length (mg/cm)</td>
<td>58 ± 3</td>
<td>63 ± 2.8</td>
<td>59 ± 2</td>
<td>64 ± 1.8</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>576 ± 8</td>
<td>578 ± 6</td>
<td>572 ± 17</td>
<td>589 ± 16</td>
</tr>
<tr>
<td>LV EF (%)</td>
<td>55 ± 3</td>
<td>59 ± 3</td>
<td>54 ± 3</td>
<td>53 ± 4</td>
</tr>
</tbody>
</table>